а) Домножим заданное выражение на 1, причем представим 1 как (2-1), тогда можно будет применить несколько раз формулу разности квадратов:
ответ:
б) Заметим, что для каждого множителя (скобки) числа от 1 до 2008 прибавляются к фиксированному числу 200, если они нечетные, и отнимаются от фиксированного числа 200, если они четные. Тогда, в произведении встретится скобка (200-200): так как число 200 четное, то в этой скобке оно будет отниматься от фиксированного числа 200. Следовательно, один из множителей равен 0, а значит и все произведение равно 0. ответ: 0
Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
Домножим заданное выражение на 1, причем представим 1 как (2-1), тогда можно будет применить несколько раз формулу разности квадратов:
ответ:
б)
Заметим, что для каждого множителя (скобки) числа от 1 до 2008 прибавляются к фиксированному числу 200, если они нечетные, и отнимаются от фиксированного числа 200, если они четные. Тогда, в произведении встретится скобка (200-200): так как число 200 четное, то в этой скобке оно будет отниматься от фиксированного числа 200. Следовательно, один из множителей равен 0, а значит и все произведение равно 0.
ответ: 0
Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180