Нужно решить с системы уравнений
1. Решите систему уравнений {6(х+3)−5(у+2)=10,2(х−1)+7(у−1)=16.
2. Пара чисел (3; -1) является решением системы уравнений {4х−3ву−4в=9,3ах+8у+а+в=15. Найдите значения а и в.
3. Периметр прямоугольника 84 см. Найдите длины его сторон, если одна из них короче другой на 10 см.
√(2x + 3y) + √(2x - 3y) = 10
√(4x² - 9y²) = 16
2x - 3y ≥ 0
2x + 3y ≥ 0
√(2x + 3y) = a ≥ 0
√(2x - 3y) = b ≥ 0
a + b = 10
ab = 16
a = 10 - b
(10 - b)b = 16
10b - b² = 16
b² - 10b + 16 = 0
D = 100 - 64 = 36
b12 = (10 +- 6)/2 = 2 8
1. b1 = 2
a1 = 10 - b1 = 8
√(2x + 3y) = 8
√(2x - 3y) = 2
---
2x + 3y = 64
2x - 3y = 4
4x = 68
x = 17
2*17 + 3y = 64
3y = 30
y = 10
2x - 3y = 34 - 30 > 0
2x + 3y = 64 > 0
2. b2 = 8
a2 = 10 - b2 = 2
√(2x + 3y) = 2
√(2x - 3y) = 8
---
2x + 3y = 4
2x - 3y = 64
4x = 68
x = 17
2*17 - 3y = 64
-3y = 30
y = -10
2x - 3y = 34 + 30 > 0
2x + 3y = 34 - 30 = 4 > 0
ответ (17, 10) (17, -10)
1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.
Объяснение: