При решении подобных задач рассматривается окружность единичного радиуса. Косинус в единичной окружности - это абсцисса, т.е. x, а синус - y sin2x=0,5. Что делаем? Проводим прямую y=0,5. Делим радиус окружности на верхней части оси y пополам. Это будет прямая, параллельная оси x. Она пересекает окружность в двух точках: в первой четверти и во второй. Соединим эти точки с началом координат. Получится 2 угла, образованные с положительным направлением оси x. Острый угол равен 30 градусов, так как sin30=1/2, а тупой угол равен 150 градусов, так как sin150=sin(180-30)=sin30=1/2 У нас неравенство sin2x<1/2. значит y<1/2, т.е. -1<y<1/2. Точке 5π/6 или 150 градусов соответствует угол (-7π/6) или (-210) градусов Решение можно написать так: -7π/6+2πn<2x<π/6+2πn⇒ -7π/12+πn<x<π/12+πn⇒
sin2x=0,5. Что делаем? Проводим прямую y=0,5. Делим радиус окружности на верхней части оси y пополам. Это будет прямая, параллельная оси x. Она пересекает окружность в двух точках: в первой четверти и во второй. Соединим эти точки с началом координат. Получится 2 угла, образованные с положительным направлением оси x. Острый угол равен 30 градусов, так как sin30=1/2, а тупой угол равен 150 градусов, так как sin150=sin(180-30)=sin30=1/2
У нас неравенство sin2x<1/2. значит y<1/2, т.е. -1<y<1/2.
Точке 5π/6 или 150 градусов соответствует угол (-7π/6) или (-210) градусов
Решение можно написать так: -7π/6+2πn<2x<π/6+2πn⇒
-7π/12+πn<x<π/12+πn⇒
Объяснение:
рассмотрим параллельный ряд тонких полос на расстоянии D > d друг от друга
монета размером d попадет внутрь и не заденет полосы с вероятностью (D-d)/D
второй ряд перпендикулярен первому
имеет тот-же размер
монета размером d попадет внутрь второго ряда и не заденет полосы с вероятностью (D-d)/D
так как ряды перпендикулярны то события попадания и непопадания на полосы одного и другого ряда независимы
значит вероятность монеты размером d не пересечь ни одной из сторон квадрата размером D является произведением двух вероятностей
( (D-d)/D ) ^2 = 0,4
( (D-d)/D ) = корень(0,4)
1 - d/D = корень(0,4)
1 - корень(0,4) = d/D
D = d/(1 - корень(0,4) ) ~ 2,7 * d
ответ D ~ 2,7 * d