Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
task/29880046 Прямая y = kx + b проходит через точку M(-2;2k) . Запишите уравнение этой прямой , если известно , что число b больше числа k на 8 .
Решение Уравнение прямой : y = kx + b. Так как прямая проходит через точку M( -2; 2k) || x =- 2 , y = 2k || , то 2k = k*(-2) +b . Известно число b больше числа k на 8, т.е. b=k + 8. Следовательно 2k = k*(-2) +k +8 ⇔ 3k = 8 ⇔
k = 8/3 ⇒ b = k + 8 = 8/3 +8 = 32/3 .
ответ : y =(8/3)x +32/3 * * * иначе 8x - 3y + 32 =0 * * *
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под ;
2. Теперь — под ;
3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :)
Попробую сейчас проверить решение.
upd: да, всё сошлось.
task/29880046 Прямая y = kx + b проходит через точку M(-2;2k) . Запишите уравнение этой прямой , если известно , что число b больше числа k на 8 .
Решение Уравнение прямой : y = kx + b. Так как прямая проходит через точку M( -2; 2k) || x =- 2 , y = 2k || , то 2k = k*(-2) +b . Известно число b больше числа k на 8, т.е. b=k + 8. Следовательно 2k = k*(-2) +k +8 ⇔ 3k = 8 ⇔
k = 8/3 ⇒ b = k + 8 = 8/3 +8 = 32/3 .
ответ : y =(8/3)x +32/3 * * * иначе 8x - 3y + 32 =0 * * *