Для начала мы можем найти стороны a и b параллелограмма. Мы знаем, что периметр это удвоенная сумма его смежных сторон, так что 2(a+b)=44. Следовательно:
a + b = 22
a - b = 2
Получили систему уравнений, которую можно решить, например, сложением.
a + a + b - b = 22 + 2
2a = 24, a = 12, b = 10
Проверяем: 12 + 10 = 22, 12 - 10 = 2.
Теперь когда мы знаем обе стороны, можем найти меньшую диагональ по формуле:
1.Найти экстремумы функций:
1) f(x)=х^3-х^2-х +2 2) f(x)= (8 -7х)*е^х
2.Найти интервалы возрастания и убывания функции f(x)=х^3-х^2-х +2
1
1)f`(x)=3x²-2x-1=0
D=4+12=16
x1=(2-4)/6=-1/3
x2=(2+4)/6=1
+ _ +
(-1/3)(1)
max min
ymax=-1/27-1/9+1/3+2=(-1-3+9+54)/27=59/27
ymin=1-1-1+2=1
2)f`(x)=-7e^x+(8-7x)e^x=e^x*(-7+8-7x)=0
1-7x=0
x=1/7
+ _
(1/7)
max
ymax=(8-1)*e^(1/7)=e^(1/7)
2
f`(x)=3x²-2x-1=0
D=4+12=16
x1=(2-4)/6=-1/3
x2=(2+4)/6=1
+ _ +
(-1/3)(1)
возр убыв возр
3
смотреть 1
x=-1/3∈[-1;3/2]
x=1∈[-1;3/2]
y(-1)=-1-1+1+2=1
y(-1/3)=59/27 наиб
4
y(1)=1
y(3/2)=27/8-9/4-3/2+2=(27-27-12+16)/8=1/2 наим
5
f`(x)=3x²-2x-1
f``(x)=6x-2 прямая проходит через точки (0:-2) и (1;4)
222.
Объяснение:
P = 44см
a - b = 2см
a∠b = 60°
Для начала мы можем найти стороны a и b параллелограмма. Мы знаем, что периметр это удвоенная сумма его смежных сторон, так что 2(a+b)=44. Следовательно:
a + b = 22
a - b = 2
Получили систему уравнений, которую можно решить, например, сложением.
a + a + b - b = 22 + 2
2a = 24, a = 12, b = 10
Проверяем: 12 + 10 = 22, 12 - 10 = 2.
Теперь когда мы знаем обе стороны, можем найти меньшую диагональ по формуле:
d = √(a^2 + b^2 - 2ab·cosβ) = √(144 + 100 - 44*1/2) = √(222)
Поскольку нам нужно найти ее квадрат, корень в конце можем не брать, а 222 и будет ответом.