Нужны 2 : 1) чому дорівнює площа бічної поверхні прямої призми, основою якої є квадрат зі стороною 2 см, а бічне ребро дорівнює 9 см? 2) знайти область визначення функції y = корінь (x-2)
1. Дано: |y=3x-1 |x+2y=5 Решение Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение: y=3x-1, при x=1 y=3-1 y=2 ответ: (1;2)
2. Дано |x+5y=13 |3x-y=-9 Решение Выразим из первого уравнения переменную x: x=13-5y
Подставим полученное выражение во второе уравнение: 3*(13-5y)-y=-9 Раскроем скобки: 39-15y-y=-9 Перенесем неизвестное значение в левую часть, а константы в правую: -16y=-9-39 y=(-48)/(-16) y=3
Подставим полученное значение в первое преобразованное уравнение: x=13-5y, при y=3 x=13-5*3 x=13-15 x=-2
3*x-8 = x+6
3*x = 14 + x
2*x = 14
x = 14 / (2)
б) 7а-10=2-4а
7*a-10 = 2-4*a
7*a = 12 - 4*a
11*a = 12
a = 12 / (11)
в) 1/6y-1/2=3-1/2y
1/6*y-1/2 = 3-1/2*y
y/6 = 7/2 - y/2
2*y/3 = 7/2
y = 7/2 / (2/3)
y = 21/4
г) 2.6-0.2b=4.1-0.5b
(13/5)-(1/5)*b = (41/10)-(1/2)*b
13/5-1/5b = (41/10)-(1/2)*b
13/5-1/5b = 41/10-1/2b
-b/5 = 3/2 - b/2
3*b/10 = 3/2
3/10b = 3/2 / (3/10)
b = 5
д) p-1/4=3/8+1/2p
p-1/4 = 3/8+1/2*p
p = 5/8 + p/2
p/2 = 5/8
/2p = 5/8 / (1/2)
p = 5/4
е) 0.8-y=3.2+y
4/5)-y = (16/5)+y
4/5-y = (16/5)+y
4/5-y = 16/5+y
-y = 12/5 + y
-2*y = 12/5
-2y = 12/5 / (-2)
y = -6/5
ж) 2/7х=1/2
2/7*x = 1/2
x = 1/2 / (2/7)
x = 7/4
з) 2х-0,7=0
2*x-(7/10) = 0
2*x-7/10 = 0
2*x = 7/10
2x = 7/10 / (2)
x = 7/20
Дано:
|y=3x-1
|x+2y=5
Решение
Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение:
y=3x-1, при x=1
y=3-1
y=2
ответ: (1;2)
2.
Дано
|x+5y=13
|3x-y=-9
Решение
Выразим из первого уравнения переменную x:
x=13-5y
Подставим полученное выражение во второе уравнение:
3*(13-5y)-y=-9
Раскроем скобки:
39-15y-y=-9
Перенесем неизвестное значение в левую часть, а константы в правую:
-16y=-9-39
y=(-48)/(-16)
y=3
Подставим полученное значение в первое преобразованное уравнение:
x=13-5y, при y=3
x=13-5*3
x=13-15
x=-2
ответ: (-2;3)