Предположим, что изначальный процент x, тогда в конце первого года на счету будет: 10000 * ((100+x)/100) [р] . В конце первого года процент стал x+5, тогда в конце второго года на счету будет: (10000 * ((100+x)/100)) * ((100+x+5)/100) = 11550 [р] Раскрываем скобки и решаем полученное уравнение: (100+x) * (105+x) = 10500 + 205*x + x*x = 11550 x*x + 205*x - 1050 = 0 Дискриминант: D = 205*205 + 4*1050 = 40000+2000+25+4200 = 46225 = 215^2 x1 = (-205 - 215)/2 = -210 (не имеет смысла) x2 = (-205 + 215)/2 = 5 ответ: 5%
ответ:Извиняюсь что не в том порядке
Объяснение:
б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде
1-sin (a)²/sin (a)+1
Использу а²-b²=(a-b)(a+b) разложим на множители выражение
(1-sin (a))*(1+sin(a))/sin(a)+1
Дальше мы можем сократить дробь на sin(a)+1
отсюда 1-sin(a)
a) Упростим выражение Sin^2 a/(1 + cos a).
Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:
Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);
разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:
(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);
Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:
(1 - cos a) * 1/1 = 1 - cos a;
Значит, sin^2 a/(1 + cos a) = 1 - cos a.
В конце первого года процент стал x+5, тогда в конце второго года на счету будет: (10000 * ((100+x)/100)) * ((100+x+5)/100) = 11550 [р]
Раскрываем скобки и решаем полученное уравнение:
(100+x) * (105+x) = 10500 + 205*x + x*x = 11550
x*x + 205*x - 1050 = 0
Дискриминант: D = 205*205 + 4*1050 = 40000+2000+25+4200 = 46225 = 215^2
x1 = (-205 - 215)/2 = -210 (не имеет смысла)
x2 = (-205 + 215)/2 = 5
ответ: 5%