В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
karisafedotova2
karisafedotova2
07.08.2020 14:34 •  Алгебра

нужны верные ответы за решение нужны верные ответы за решение ">

Показать ответ
Ответ:
мирок3
мирок3
25.03.2022 20:45

3

Объяснение:

5 * 2 ^ 145 + 7 * 29 ^ 11 = 5 * 2 ^ 145 - 7 mod(15)

Рассмотрим остатки при возведении в степень по модулю 15

Степени двойки    По модулю 15

2                              2

4                              4

8                              8  

16                             1

32                            2

Заметим что они циклятся с периодом 4. Строго докажем это. Для этого запишем 2^m как 2 ^ (4*n + k), k >= 0, k < 4.

2^m = 2 ^ ( 4 * n + k) = 2^(4n) * 2^k = 16^n *2 ^ k = 2 ^ k mod(15)

Тогда 2^145 = 2 ^ (36 * 4 + 1 ) = 2 mod (15)

Тогда исходной равно

5 * 2 ^ 145 + 7 * 29 ^ 11 = 5 * 2 - 7 = 3 mod (15)

0,0(0 оценок)
Ответ:
fogeimof
fogeimof
22.05.2022 13:05

Давайте для начала формализуем условие. У насть есть вероятностное простравнство Ω. Что такое в нём исход? Исход - это как раз передача сообщения n раз. Исход можно закодировать последовательностью n+1 чисел. Каждое число в последовательности обозначает жителя, а следующее жителя которому будет передано сообщение. Получаем, что:

\Omega = \{ (a_1,a_2,\ldots,a_{n+1}) \,\, | \, \, a_i \neq a_{i+1} \}

Из условия следует, что каждый исход равновероятен. P(\omega) = \frac{1}{n^n}.

Теперь посчитаем вероятность, что новость будет передана n раз без повторного сообщения её кому-нибудь. Обозначим это событие как A. Заметим, что каждый благоприятный исход (лежит в А) представляет собой перестановку (n+1)-го чисел. Всего таких перестановок (n+1)! . Теперь можно считать вероятность:

P(A) = \sum_{\omega \in A} P(\omega) = \frac{|A|}{n^n} = \frac{(n+1)!}{n^n}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота