1. Найти наибольшее и наименьшее значение функции
на промежутке [-4; 1]
Точка разрыва x=9 в заданный интервал не входит.
Первая производная для нахождения точек экстремумов.
Обе точки экстремумов не попадают в интервал x∈[-4; 1]
Значения функции на концах интервала
ответ: наименьшее значение функции ;
наибольшее значение функции F(1) = 0,75
-----------------------------------------------------------------------------
2. Записать уравнение касательной к графику
функции F(x)=x⁴-2x в точке x₀=-1
Уравнение касательной имеет вид y = F(x₀) + F’(x₀)·(x - x₀)
F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3
F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6
y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3
ответ: уравнение касательной y = -6x - 3
---------------------------------------------------------------------------
3. Исследовать функцию и построить ее график F(x)=x³-3x²
1) Область определения D(F) = R
2) Область значений E(F) = R
3) Нули функции
F(x)=x³-3x² = 0; x²(x - 3) = 0; x₁ = 0; x₂ = 3
4) Пересечение с осью OY
x = 0; F(0) = 0³-3·0² = 0
5) Экстремумы функции
F'(x) = 0; (x³-3x²)' = 0; 3x² - 6x = 0; 3x(x - 2) = 0;
x₁ = 0; F(0) = 0; F"(0) = 6x - 6 = -6 ⇒ локальный максимум.
x₂ = 2; F(2) = 2³-3·2² = -4; F"(2) = 6x - 6 = 6 ⇒ локальный минимум.
6) Монотонность функции.
Интервалы знакопостоянства первой
производной F'(x) = 3x(x - 2)
++++++++ (0) ------------- (2) +++++++++> x
/ \ /
x ∈ (-∞; 0)∪(2; +∞) - функция возрастает
x ∈ (0;2) - функция убывает
7) Функция не периодическая, общего вида (не является чётной, не является нечётной).
8) Дополнительные точки для построения
x₃ = -1; y₃ = -4; x₄ = 1; y₄ = -2
9) График функции в приложении
1) 6x^2-5x+1=0
D=(-5)^2-4*6*1=25-24=1
x1=(-(-5)-V1)/2*6=(5-1)/12=4/12=1/3
x2=(-(-5)+V1)/2*6=(5+1)/12=6/12=1/2;
2) x^2+7x=0
x*(x+7)=0
x1=0
x2+7=0
x2=-7
3) x^3-9x=0
x*(x^2-9)=0
x1=0
x^2-9=0
x^2=9
x2=-3
x3=3;
4) (x^2-x)^2-5(x^2-x)-6=0
(x^2-x)=a
a^2-5a-6=0
D=(-5)^2-4*1*(-6)=25+24=49
a1=(-(-5)-V49)/2*1=(5-7)/2=-2/2=-1
a2=(-(-5)+V49)/2=(5+7)/2=12/2=6
(x^2-x)=-1
x^2-x+1=0
D=(-1)^2-4*1*1=1-4=-3, так как D<0-нет корней уравнения;
x^2-x=6
x^2-x-6=0
D=(-1)^2-4*1*(-6)=1+24=25
x1=(-(-1)-V25)/2*1=(1-5)/2=-4/2=-2
x2=(-(-1)+V25)/2*1=(1+5)/2=6/2=3
2) Составить квадратное уравнение, корни которого -3 и 4.
(x-x1)*(x-x2)=(x-(-3))*(x-4)=(x+3)*(x-4)=x^2-4x+3x-12=x^2-x-12;
3) Разность корней квадратного уравнения x^2 +3x+q=0 равна 7.Найдите q.
x1-x2=7
По т.Виета x1+x2=-p
x1*x2=q
{x1-x2=7
{x1+x2=-3- получили систему уравнений. Сложим уравнения и получим:
2x1=4
x1=4/2=2-Данный корень подставим во второе уравнение системы.
x1+x2=-3
x2=-3-x1
x2=-3-2
x2=-5
x1*x2=2*(-5)=-10
x^2+3x-10=0;
4) Выделив квадрат двучлена,найдите наименьшее значение выражения x^2-2x+2=x^2-2x+1+1=(x+1)^2+1; 5) Найдите два последовательных натуральных числа, если их сумма больше суммы их квадрата на 60. Пусть x-одно число, (x+1)-второе число. Тогда (x+x+1)^2=x^2+(x+1)^2+60 4x^2+1=x^2+x^2+2x+1+60 4x^2+1-2x^2-2x-61=0 2x^2-2x-60=0|:2 x^2-x-30=0 По т.Виета x1+x2=-1 x1*x2=-30 x1=-6-не является решением. x2=5. Тогда первое число x =5 Второе число х+1=6 ответ: 5 и 6.
1. Найти наибольшее и наименьшее значение функции
на промежутке [-4; 1]
Точка разрыва x=9 в заданный интервал не входит.
Первая производная для нахождения точек экстремумов.
Обе точки экстремумов не попадают в интервал x∈[-4; 1]
Значения функции на концах интервала
ответ: наименьшее значение функции ;
наибольшее значение функции F(1) = 0,75
-----------------------------------------------------------------------------
2. Записать уравнение касательной к графику
функции F(x)=x⁴-2x в точке x₀=-1
Уравнение касательной имеет вид y = F(x₀) + F’(x₀)·(x - x₀)
F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3
F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6
y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3
ответ: уравнение касательной y = -6x - 3
---------------------------------------------------------------------------
3. Исследовать функцию и построить ее график F(x)=x³-3x²
1) Область определения D(F) = R
2) Область значений E(F) = R
3) Нули функции
F(x)=x³-3x² = 0; x²(x - 3) = 0; x₁ = 0; x₂ = 3
4) Пересечение с осью OY
x = 0; F(0) = 0³-3·0² = 0
5) Экстремумы функции
F'(x) = 0; (x³-3x²)' = 0; 3x² - 6x = 0; 3x(x - 2) = 0;
x₁ = 0; F(0) = 0; F"(0) = 6x - 6 = -6 ⇒ локальный максимум.
x₂ = 2; F(2) = 2³-3·2² = -4; F"(2) = 6x - 6 = 6 ⇒ локальный минимум.
6) Монотонность функции.
Интервалы знакопостоянства первой
производной F'(x) = 3x(x - 2)
++++++++ (0) ------------- (2) +++++++++> x
/ \ /
x ∈ (-∞; 0)∪(2; +∞) - функция возрастает
x ∈ (0;2) - функция убывает
7) Функция не периодическая, общего вида (не является чётной, не является нечётной).
8) Дополнительные точки для построения
x₃ = -1; y₃ = -4; x₄ = 1; y₄ = -2
9) График функции в приложении