Итак у нас три дроби : первая : 3а/(а-4) вторая : (а+2) / (2а-8) третья : 96 / (а² + 2а) теперь порядок решения : 1)сначала умножение дробей ( вторую дробь не переворачиваем, т.к. это умножение) 2) вычитание дробей *при умножении дроби к общему знаменателю не приводят. *при умножении дробей, под общей чертой, можно сокращать (делить друг на друга) числа числителя и знаменателя. и так умножает 2-ую и 3-ью дроби получаем: (а+2) * 96 (а+2) * 96 1) = (2а-8) * (а²+2а) 2* (а-4) * а* (а+2) ↑ 2а-8 = как 2* (а-4) ↑ а²+2а = как а* (а+2) 2) и так, у нас в числителе и в знаменателе стоят знаки " * " поэтому мы можем сокращать числа : 96/2 = 48 (а+2)/(а+2) = 1 48 3) получаем дробь : а* (а-4) 1) теперь будем вычитать дроби : из 1-ой - полученную : 3а 48 - при вычитании (сложении) знаменатели должны (а-4) а * (а-4) быть одинаковыми, а у нас сейчас они разные 1) приводим дроби к общему знаменателю : домножаем первую дробь на " а ", при этом умножаем и числитель и знаменатель на " а " 2) получаем дробь (3а*а)/ а* (а-4) и вычитаем : 3а² * 48 3*а*48 144а = = сократить не можем ,т.к. знак минус в а * (а-4) а-4 а-4 знаменателе
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)