По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.
Объяснение:
Первая труба наполняет бассейн за х часов,тогда за час - 1/х.
Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).
Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).
(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)
При совместной работе они наполняют бассейн за 12 часов:
1 ÷ (2х+10) / (х²+10х) = 12
1 * (х²+10х) / (2х+10) = 12
(х²+10х) / (2х+10) = 12
12*(2х+10) = х²+10х
24х+120-х²-10х=0
-х²+14х+120=0
х²-14х-120=0
х₁+х₂=14
х₁х₂= -120
х₁= -6 не подходит по условию
х₂=20 часов - первая труба наполняет бассейн.
20+10=30 часов - вторая труба наполняет бассейн.