Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Объяснение:
https://tex.z-dn.net/?f=%20%5Csqrt%7B11-4%20%5Csqrt%7B7%7D%7D%2B%20%5Csqrt%7B16-6%20%5Csqrt%7B7%7D%7D%3D%20%5Csqrt%7B7-2%2A2%20%5Csqrt%7B7%7D%2B4%7D%2B%5Csqrt%7B9-2%2A3%2A%5Csqrt%7B7%7D%2B7%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D%29%5E2-2%2A2%20%5Csqrt%7B7%7D%2B2%5E2%7D%2B%5Csqrt%7B3%5E2-2%2A3%2A%5Csqrt%7B7%7D%2B%28%5Csqrt%7B7%7D%29%5E2%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D-2%29%5E2%7D%2B%5Csqrt%7B%283-%20%5Csqrt%7B7%7D%29%5E2%7D%3D%7C%5Csqrt%7B7%7D-2%7C%2B%7C3-%20%5Csqrt%7B7%7D%7C%3D%20%5C%5C%20%3D%5Csqrt%7B7%7D-2%2B3-%20%5Csqrt%7B7%7D%3D1
Это ссылка!
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х 0.5 0 -0.5
у' -0.6875 0 0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) : умакс = 1,
умин = -809.