Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0