Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180
8*(80/x-1)=18*(80/(80-x)-1)
4*(80-x)/x=9*(80-80+x)/(80-x)
4*(80-x)/x=9x/(80-x)
4*(80-x)^2=9x^2
4*(6400-160x+x^2)=9x^2
25600-640x+4x^2=9x^2
5x^2+640x-25600=0
x^2+128x-5120=0
D=36864=192^2
x1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным)
1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член.
n-й член нам дан: an = 5n + 3, найдём (n-1)-й:
a(n-1) = 5 (n - 1) + 3 = 5n -2.
Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d
Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5.
Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n
Для этого надо знать ещё a1 = 5 *1 + 3 = 8
S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
2) Поступаем аналогично.
an = 5 - n/2; a(n-1) = 5 - (n-1)/2 = 5.5 - n/2
Находим разность an - a(n-1) = 5 - n/2 - 5.5 + n/2 = -0.5 = d
Находим a1 = 5 - 1/2 = 4.5
Находим сумму первых 10 членов
S10= (1/2) * (2*4.5 + (-0.5)*(10 - 1))*10 = (9 - 4.5) * 5 = 4.5*5 = 22.5
пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180
8*(80/x-1)=18*(80/(80-x)-1)
4*(80-x)/x=9*(80-80+x)/(80-x)
4*(80-x)/x=9x/(80-x)
4*(80-x)^2=9x^2
4*(6400-160x+x^2)=9x^2
25600-640x+4x^2=9x^2
5x^2+640x-25600=0
x^2+128x-5120=0
D=36864=192^2
x1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным)
x2=(-128+192)/2=32
x=32
ответ: 32 км