Итак, представим числа 33 и 77 в виде суммы десятков и единиц: 33=30+3, 77=70+7. Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77... Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7. Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости... Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3... 3^1=3 3^2=9 3^3=27 3^4=81 3^5=243... Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1. 77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5. (7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.
Уравнение ax + by + c = 0 является уравнением прямой, которая в общем виде запишется как у = kx + m, приведем наше уравнение к общему виду линейных функций: ax + by + c = 0, by = - ax - c; y = - a/bx - c/b, где k = - a/b, m = - c/b; График функции будет прямая которая зависит от коэффициентов k и m, рассмотрим каждый случай: а) Для того чтобы прямая была параллельна оси Ох, необходимо чтобы коэффициент около х ( то есть а) равнялся 0 и уравнение прямой примет вид: by + c = 0; б) Для того чтобы прямая была параллельна оси Оy, необходимо чтобы коэффициент около y(то есть b) равнялся 0 и уравнение прямой примет вид: ax + c = 0; в) Чтобы график проходил через начало координат необходимо чтобы с = 0 и уравнение прямой примет вид: ax + by = 0; г) График совпадет с ось Ох (или Oy), когда коэффициент около у (или х) равен 0 и с = 0, тогда имеем: by = 0 - совпадает с ось Ох; (a,c = 0); ax = совпадает с ось Оy; (b,c = 0).
33=30+3, 77=70+7.
Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77...
Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7.
Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости...
Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3...
3^1=3
3^2=9
3^3=27
3^4=81
3^5=243...
Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1.
77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5.
(7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.