1) Показательная функция с основанием 6>1 монотонно возрастает. Большему значению функции соответствует большее значение аргумента: х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0 ---------------(-3)--------------(1)---------------------- \\\\\\\\\\\\\\\\\\\\\ //////////////////// ответ. (-∞;-3)U(1;+∞) 2) Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: x-2=1/2 ⇒x=2,5 ответ. 2,5 3) 25=5² Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: х²-2х-1=2 х²-2х-3=0 (х+1)(х-2)=0 х=-1 или х=2 ответ. -1; 2 4) Замена переменной t²-5t+4=0 D=25-16=9 t=1 или t=4 ⇒ x=0 ⇒ x=2 ответ. 0; 2 5)Замена переменной t²-6t+5=0 D=36-20=16 t=1 или t=5 ⇒ x=0 ⇒ x=1 ответ. 0; 1
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0
---------------(-3)--------------(1)----------------------
\\\\\\\\\\\\\\\\\\\\\ ////////////////////
ответ. (-∞;-3)U(1;+∞)
2)
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
x-2=1/2 ⇒x=2,5
ответ. 2,5
3) 25=5²
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
х²-2х-1=2
х²-2х-3=0
(х+1)(х-2)=0
х=-1 или х=2
ответ. -1; 2
4) Замена переменной
t²-5t+4=0
D=25-16=9
t=1 или t=4
⇒ x=0
⇒ x=2
ответ. 0; 2
5)Замена переменной
t²-6t+5=0
D=36-20=16
t=1 или t=5
⇒ x=0
⇒ x=1
ответ. 0; 1
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т :