Чтобы решить систему:
7x - 3y = 13;
x - 2y = 5,
Мы с вами применим метод подстановки. Первым действием из второго уравнения системы выражаем одну переменную через другую (переменную x через y).
Система:
x = 5 + 2y;
Подставляем в первое уравнение 7x - 3y = 13 вместо x выражение 5 + 2y из второго и получаем:
7(5 + 2y) - 3y = 13;
Ищем значение переменной y:
7 * 5 + 7 * 2y - 3y = 13;
35 + 14y - 3y = 13;
11y = -22;
y = -2.
Система уравнений:
x = 5 + 2 * (-2) = 5 - 4 = 1;
y = -2
ответ: (1; -2) решение системы.
Чтобы решить систему:
7x - 3y = 13;
x - 2y = 5,
Мы с вами применим метод подстановки. Первым действием из второго уравнения системы выражаем одну переменную через другую (переменную x через y).
Система:
7x - 3y = 13;
x = 5 + 2y;
Подставляем в первое уравнение 7x - 3y = 13 вместо x выражение 5 + 2y из второго и получаем:
x = 5 + 2y;
7(5 + 2y) - 3y = 13;
Ищем значение переменной y:
7 * 5 + 7 * 2y - 3y = 13;
35 + 14y - 3y = 13;
11y = -22;
y = -2.
Система уравнений:
x = 5 + 2 * (-2) = 5 - 4 = 1;
y = -2
ответ: (1; -2) решение системы.
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж