Общее их количество 49 шт., из них красных — 11 шт., зелёных — 11 шт., голубых — 19 шт. Кроме того, есть ещё чёрные и белые. Найди минимальное необходимое количество бусин, которое надо достать, чтобы среди них гарантированно оказалось 18 шт. одного цвета.
Биссектриса равностороннего треугольника является высотой, которая делит равносторонний треугольник на равных прямоугольных треугольника.
Биссектрису, которая является катетом прямоугольного треугольника, можно найти по Теореме Пифагора.
Сторона треугольника-гипотенуза, биссектриса делит основание равностороннего треугольника пополам:
12√3 : 2=6√3-другой катет
По теореме Пифагора:
с²=а²+b²
(12√3)²=(6√3)² +b²
b²=(12√3)² - (6√3)²=144*3 - 36*3=432 - 108=324
b=√324=18- биссектриса
ответ: Биссектриса в данном равностороннем треугольнике равна 18
где (хо; уо) - центр окружности, R - радиус окружности
А(3;1) и В(-1;3) - точки окружности =>
{ (3-xo)²+(1-yo)²=R²
{ (-1-xo)²+(3-yo)²=R² => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)²
По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2
Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим:
(3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)²
(3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)²
9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo
18-24xo=26-28xo
4xo=8
xo=2
yo=3*2-2=6-2=4
S(2;4) - центр окружности
Находим квадрат радиуса окружности:
R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10
Запишем полученное уравнение окружности:
(x-2)²+(y-4)²=10