Выражение под знаком логарифма должно быть положительным и не равным единице. Отсюда получаем систему неравенств:
x²+1,5*x>0 x²+1,5*x≠1
Решая уравнение x²+1,5*x=x*(x+1,5)=0, находим x1=0 и x2=-1,5. При x<-1,5 x²+1,5*x>0, при -1,5<x<0 x²+1,5*x<0, при x>0 x²+1,5*x>0. Поэтому первому неравенству удовлетворяют интервалы (-∞;-1,5)∪(0;+∞). Решая уравнение x²+1,5*x=1, или равносильное ему x²+1,5*x-1=0, находим x=(-1,5+2,5)/2=0,5 либо x=(-1,5-2,5)/2=-2. Поэтому область определения состоит из интервалов (-∞;-2)∪(-2;-1,5)∪(0;0,5)∪(0,5;+∞)
Ко всем перечисленным условиям подходит квадратичная функция графиком которой является парабола - кривая симметричная оси, проходящей через вершину параболы. На рисунке представлен график функции y=x²-2x-3, удовлетворяющий заданным требованиям. Также заданным условиям может удовлетворять график y=-x²+2x+3, то есть та же парабола, но ветви которой направлены вниз. Значение функции найдено с использованием формулы разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂) Подставим значения х, при которых у=0 (x+1)(x-3)=x²-2x-3 или -(x+1)(x-3)=-x²+2x+3
x²+1,5*x>0
x²+1,5*x≠1
Решая уравнение x²+1,5*x=x*(x+1,5)=0, находим x1=0 и x2=-1,5. При x<-1,5 x²+1,5*x>0, при -1,5<x<0 x²+1,5*x<0, при x>0 x²+1,5*x>0. Поэтому первому неравенству удовлетворяют интервалы (-∞;-1,5)∪(0;+∞). Решая уравнение x²+1,5*x=1, или равносильное ему x²+1,5*x-1=0, находим x=(-1,5+2,5)/2=0,5 либо x=(-1,5-2,5)/2=-2. Поэтому область определения состоит из интервалов (-∞;-2)∪(-2;-1,5)∪(0;0,5)∪(0,5;+∞)
На рисунке представлен график функции y=x²-2x-3, удовлетворяющий заданным требованиям.
Также заданным условиям может удовлетворять график y=-x²+2x+3, то есть та же парабола, но ветви которой направлены вниз.
Значение функции найдено с использованием формулы разложения квадратного трёхчлена на множители:
ax²+bx+c=a(x-x₁)(x-x₂)
Подставим значения х, при которых у=0
(x+1)(x-3)=x²-2x-3
или
-(x+1)(x-3)=-x²+2x+3