3y^2 < 2xy+3y^2 = 24, 3y^2<24, y^2<24/3 = 8, y< , кроме того, x и y натуральные, поэтому x>=1 и y>=1. 1<=y< ,
(докажем это строго, т.к. обе части этого неравенства положительны, а квадрат - это строго возрастающая функция на положительной полуоси, то , <=> , верное неравенство, значит и исходное неравенство в силу равносильности тоже верное) 1<=y<2,9; Возможные варианты только y=1 или y=2. 1) y=1, подставляем это в исходное уравнение, получаем 2x+ 3 = 24, <=> 2x=24-3 = 21, <=> x = 21/2, и икс не является натуральным. Поэтому случай y=1 не годится. 2) y=2, подставляем в исходное уравнение, 2x*2 + 3*(2^2) = 24, <=> 4x+12 = 24, <=> 4x=24-12 = 12, <=> x=12/4 = 3. ответ. x=3 и y=2.
ответ:
объяснение:
1)найти значения ч ,при которых значения производной фунции f (x) равно 0
1.f (x)=sin 2x-x
2.f (x)=cos2x+2x
3.f (x)=(2x-1)^3
4.f (x)=(1-3x)^5
2)показать что f ' (1)=f ' (0),если f (x)=(2х-3)(3х^2+1)
3)найти значения х ,при которых значения производной функции f (x)=х^3-1,5x^2-18x+(корень из 3) отрицательны
4)найти производную
1. 2.
x^5-3x^3+2x^2-x+3 6x(кубический корень из х)
y= y=
x^3 (корень из х)
5)найти производную
1.
2.
3x^2-2x+1 2x^2-3x+1
y= y=
x+1 2x+1
6)найти производную
1.y=(2x+1)^2(корень из х-1)
2.y=x^2(кубический корень из (х+1)^2
4.y=x cos2x
7)найти значения х,для которых производная функции f (x)=(х-1)(х-2)(х-3) равна -1
1+sin2x
8)дана функция f (x)= найти f ' (0) и f ' (п/6)
1-sin 2x
9)найти значения х,при которых f ' (x) меньше или равно g ' (х),если f (x)=х^3+x^2+x(корень из 3) g(x)=x(корень из 3)+1
3y^2<24,
y^2<24/3 = 8,
y< ,
кроме того, x и y натуральные, поэтому x>=1 и y>=1.
1<=y< ,
(докажем это строго, т.к. обе части этого неравенства положительны, а квадрат - это строго возрастающая функция на положительной полуоси, то
, <=> , верное неравенство, значит и исходное неравенство в силу равносильности тоже верное)
1<=y<2,9;
Возможные варианты только y=1 или y=2.
1) y=1, подставляем это в исходное уравнение, получаем
2x+ 3 = 24, <=> 2x=24-3 = 21, <=> x = 21/2, и икс не является натуральным. Поэтому случай y=1 не годится.
2) y=2, подставляем в исходное уравнение,
2x*2 + 3*(2^2) = 24, <=> 4x+12 = 24, <=> 4x=24-12 = 12, <=> x=12/4 = 3.
ответ. x=3 и y=2.