Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение:
1) x(7 - x) > 0 Умножаем на -1, при этом меняется знак неравенства x(x - 7) < 0 По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0 Умножаем на -1, при этом меняется знак неравенства x^2*(x - 3)(x + 1) >= 0 x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение. Делим на x^2 (x - 3)(x + 1) >= 0 По методу интервалов x ∈ (-oo; -1] U [3; +oo) Добавим решение x=0 и получим: x ∈ (-oo; -1] U [0] U [3; +oo)
Пускай длина - a, ширина - b.
Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат.
У квадрата все стороны равны!
Обозначим стороны данного квадрата:
Длина: a - 4
Ширина: b + 7.
Ширина равняется длине у квадрата.
Значит:
Еще, знаем что площадь квадрата равна 100.
То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение.
Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11
a = 3 + 11 = 14
Подставим в первое уравнение:
Задача решена.
ответ: сторона квадрата - 10см.
Умножаем на -1, при этом меняется знак неравенства
x(x - 7) < 0
По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0
Умножаем на -1, при этом меняется знак неравенства
x^2*(x - 3)(x + 1) >= 0
x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение.
Делим на x^2
(x - 3)(x + 1) >= 0
По методу интервалов x ∈ (-oo; -1] U [3; +oo)
Добавим решение x=0 и получим:
x ∈ (-oo; -1] U [0] U [3; +oo)
3) 3x^2 - 7x + 2 < 0
D = 7^2 - 4*3*2 = 49 - 24 = 25 = 5^2
x1 = (7 - 5)/6 = 2/6 = 1/3; x2 = (7 + 5)/6 = 12/6 = 2
По методу интервалов x ∈ (1/3; 2)