1) Найдём ∠АВС. Он будет равен 180° - 80° = 100°. 2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны. Мы знаем, что сумма углов в треугольнике равна 180°. Найдём угол при основании равнобедренного треугольника: Обозначим угол при основании буквой А для удобства. Значит 2а = 180° - 100° 2а = 80° а = 40° Угол при основании треугольника АВС равен 42°. 3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°) 4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ: 180° - 100° - 20°= 60° ответ: ∠АМВ = 60°
Геометрическое место точек, одинаково удаленных от двух точек A(2;1) и B(−1;4), - это прямая, перпендикулярная отрезку АВ и проходящая через его середину. АВ: (х - 2)/(-1 - 2) = (у - 1)/(4 - 1). АВ: (х - 2)/(-3) = (у - 1)/(3). Это же уравнение в виде с коэффициентом: у = -х + 3. Находим координаты середины АВ - пусть это точка С. С((2-1)/2=0,5; (1+4)/2=2,5) = (0,5; 2,5). Уравнение искомой прямой: у = (-1/(-1))х + в = х + в. Для определения коэффициента в в уравнение подставим координаты точки С: 2,5 = 0,5 + в, в = 2,5 - 0,5 = 2. ответ: у = х + 2.
2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны.
Мы знаем, что сумма углов в треугольнике равна 180°.
Найдём угол при основании равнобедренного треугольника:
Обозначим угол при основании буквой А для удобства. Значит
2а = 180° - 100°
2а = 80°
а = 40°
Угол при основании треугольника АВС равен 42°.
3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°)
4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ:
180° - 100° - 20°= 60°
ответ: ∠АМВ = 60°
АВ: (х - 2)/(-1 - 2) = (у - 1)/(4 - 1).
АВ: (х - 2)/(-3) = (у - 1)/(3).
Это же уравнение в виде с коэффициентом:
у = -х + 3.
Находим координаты середины АВ - пусть это точка С.
С((2-1)/2=0,5; (1+4)/2=2,5) = (0,5; 2,5).
Уравнение искомой прямой: у = (-1/(-1))х + в = х + в.
Для определения коэффициента в в уравнение подставим координаты точки С: 2,5 = 0,5 + в, в = 2,5 - 0,5 = 2.
ответ: у = х + 2.