Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
рассмотрим на примерах несколько решения систем подстановки.Решим систему уравнений подстановки заключается в следующем:1) выражаем одно неизвестное через другое, воспользовавшись одним из заданных уравнений. Обычно выбирают то уравнение, где это делается проще. В данном случае нам все равно, какое из заданных уравнений использовать для нашей цели. Возьмем, например, первое уравнение системы, и выразим x через y: .2) подставим во второе уравнение системы вместо x полученное равенство: .Получили линейное уравнение относительно переменной y. Решим это уравнение, помножим это равенство на 2, чтобы избавиться от дроби в левой части равенства:Подставим найденное значение в равенство, выражающее x, получим: .Таким образом, нами найдена пара значений , которая является решением заданной системы. Осталось сделать проверку.Проверка уравнивания коэффициентов при неизвестных состоит в том, что исходную систему приводят к такой эквивалентной системе, где коэффициенты при x или y были одинаковы. Покажем, как это делается, на данном примере.Решим систему: 1) Для приравнивания коэффициентов, например при y надо найти НОК(3; 5)=15, где 3 и 5 —коэффициенты при y в уравнениях системы. Затем разделить 15 на 3 — коэффициент при y в первом уравнении, получим 5. Делим 15 на 5 — коэффициент при — во втором уравнении, получаем 3. Следовательно, первое уравнение системы умножаем на 5. а второе на 3:2) Так как коэффициенты при y имеют противоположные знаки, складываем почленно уравнения системы:3) Для нахождения соответствующего значения y подставим значение x в любое исходное уравнение системы (обычно подставляют в то уравнение системы, где отыскание значения y проще). В исходной системе уравнения одинаковы по сложности, поэтому подставим значение x = 4 во второе уравнение, чтобы не делать лишней операции деления на -1: Таким образом, найдена пара значений которая является решением заданной системы.Иногда задаются системы уравнений, где нет необходимости в уравнивании коэффициентов при неизвестных. Почленное сложение или вычитание уравнений системы приводит к простейшему решению.Например, решить систему уравнений: Складывая почленно уравнения заданной системы, получим:.Подставив вместо x значение 5 во второе уравнение исходной системы, находим соответствующее значение y:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: