Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
L1:2x-y+7=0 L2:x/2-y/3=1 Почему они не параллельны? Перпендикулярны ли они? Найти угол между l1 и l2 Решение: А*х+В*у+С=0 - уравнение прямой в общем виде у=kx+в - уравнение прямой с угловым коэффициентом k Угловой коэффициент равен тангенсу угла наклона прямой к оси Ох. У параллельных прямых угловые коэффициенты равны или k1=k2 У перпендикулярных прямых k1*k2=-1 Тангенс угла между двумя прямыми у=k1*x+в1 у=k2*x+в2 равен tg(α)=(k2-k2)/(1+k1*k2) В нашем случае: L1: 2x-y+7=0 или y=2x+7 k1=2 L2: x/2-y/3=1 <=> 3x - 2y =6<=> 2y=3x-6 <=> y=1,5x-3 k2=1,5 Так как k1=2 ≠ 1,5=k2 то прямые не параллельны. Проверим перпендикулярность прямых k1*k2 = 2*1,5 = 3 ≠ -1 Поэтому прямые не перпендикулярны.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
Почему они не параллельны? Перпендикулярны ли они? Найти угол между l1 и l2
Решение:
А*х+В*у+С=0 - уравнение прямой в общем виде
у=kx+в - уравнение прямой с угловым коэффициентом k
Угловой коэффициент равен тангенсу угла наклона прямой к оси Ох.
У параллельных прямых угловые коэффициенты равны или k1=k2
У перпендикулярных прямых k1*k2=-1
Тангенс угла между двумя прямыми
у=k1*x+в1
у=k2*x+в2
равен tg(α)=(k2-k2)/(1+k1*k2)
В нашем случае:
L1: 2x-y+7=0 или y=2x+7
k1=2
L2: x/2-y/3=1 <=> 3x - 2y =6<=> 2y=3x-6 <=> y=1,5x-3
k2=1,5
Так как k1=2 ≠ 1,5=k2 то прямые не параллельны.
Проверим перпендикулярность прямых
k1*k2 = 2*1,5 = 3 ≠ -1
Поэтому прямые не перпендикулярны.
Тангенс угла наклона между прямыми равен
tg(α)=(2 -1,5)/(1+1,5*2) = 0,5/4 = 0,125
α =arctg(0,125) ≈ 7,13 градусов