№1 Применяем ограниченность синуса и косинуса -1≤cosx≤1 Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса -1≤sinx≤1 Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции у=1/(sinx-sin3x) Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0 Найдем при каких х знаменатель равен 0. Решаем уравнение sinx-sin3x=0 Применяем формулу
Так как синус - нечетная функция, то sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z ответ. Область определения: x≠πk, k∈Z x≠(π/4)+(π/2)n, n∈ Z
Применяем ограниченность синуса и косинуса
-1≤cosx≤1
Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса
-1≤sinx≤1
Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции
у=1/(sinx-sin3x)
Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0
Найдем при каких х знаменатель равен 0. Решаем уравнение
sinx-sin3x=0
Применяем формулу
Так как синус - нечетная функция, то
sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z
cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z
ответ. Область определения: x≠πk, k∈Z
x≠(π/4)+(π/2)n, n∈ Z
(1+cos2x)/2 +(1+cos2y)/2 -(1-cos2(x+y))/2 = 2cosx ;
1+cos2x +1+cos2y -1+cos2(x+y) = 4cosx ;
(1+cos2(x+y) ) +(cos2x +cos2y )= 4cosx ;
2cos²(x+y) +2cos(x+y)cos(x-y) = 4cosx ;
2cos(x+y)( cos(x+y)+cos(x-y)) = 4cosx ;
2cos(x+y)*2 cosx*cosy = 4cosx ;
4cosx (cos(x+y)cosy -1) =0 ;
а) cosx =0 ;
x =π/2 +πk , k∈Z .
б) cos(x+y)cosy -1 =0 ⇔ cos(x+y)cosy=1 .
б₁) {cos(x+y) = -1 ; cosy= -1.
{ x+y =π+2πk ; y = π+2πn ⇒{x=2π(k -n) ; y = π+2πn .
б₂) {cos(x+y) =1 ; cosy= 1 ;
{x+y =2πk ; y = 2πn ⇒{x=2π(k -n) ; y = 2πn .