x = -5
y = 4
z = -1
Объяснение:
Первую строку умножим на 3 и прибавим ко второй:
(6x + 9y - 3z) + (x + y + 3z) = 9 + (-4)
7x + 10y = 5
Получается:
Первую строку прибавим к третьей:
(2x + 3y - z) + (3x + 5y + z) = 3 + 4
5x + 8y = 7
Теперь, вторую строку умножим на 8, а третью - на 10 и вычтем из второй третью:
(56x + 80y) - (50x + 80y) = 40 - 70
6x = -30
Получаем такую систему:
Находим x:
Теперь ищем y по второй строке:
7 * (-5) + 10y = 5
-35 + 10y = 5
10y = 40
Теперь z, по первой:
2 * (-5) + 3 * 4 - z = 3
-10 + 12 - z = 3
2 - z = 3
Вопросов слишком много - ответы тоже краткие.
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.
x = -5
y = 4
z = -1
Объяснение:
Первую строку умножим на 3 и прибавим ко второй:
(6x + 9y - 3z) + (x + y + 3z) = 9 + (-4)
7x + 10y = 5
Получается:
Первую строку прибавим к третьей:
(2x + 3y - z) + (3x + 5y + z) = 3 + 4
5x + 8y = 7
Получается:
Теперь, вторую строку умножим на 8, а третью - на 10 и вычтем из второй третью:
(56x + 80y) - (50x + 80y) = 40 - 70
6x = -30
Получаем такую систему:
Находим x:
6x = -30
x = -5
Теперь ищем y по второй строке:
7 * (-5) + 10y = 5
-35 + 10y = 5
10y = 40
y = 4
Теперь z, по первой:
2 * (-5) + 3 * 4 - z = 3
-10 + 12 - z = 3
2 - z = 3
z = -1
Вопросов слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.