1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Пусть х - количество трехмеcтных, а у = двухместных. Известно, что всего 7 палаток, тогда х + у = 7. Всего было 17 туристов, 3x туристов разместилось в трехместных палатках и 2у - в двухместных. 3х+2у=17. Составим систему уравнений
х + у = 7
3х + 2у = 17
у = 7 - х
Подставим значение у во второе уравнение
3х + 2(7-х) = 17
3х + 14 - 2х = 17
х = 17- 14
х = 3
Следовтельно, трехместных палаток было 3, а двухместных 7-3 = 4
ответ: 3 трехместных и 4 двухместных палатки.
Можно сделать и уравнение с одним неизвестным.
Пусть было х двуместных палаток. Тогда трехместных (7-х). Известно, что всего было 17 туристов, тогда в двухместных палатках было 2х туристов, а в трехместных 3(7-х). Имеем уравнение
Пусть х - количество трехмеcтных, а у = двухместных. Известно, что всего 7 палаток, тогда х + у = 7. Всего было 17 туристов, 3x туристов разместилось в трехместных палатках и 2у - в двухместных. 3х+2у=17. Составим систему уравнений
х + у = 7
3х + 2у = 17
у = 7 - х
Подставим значение у во второе уравнение
3х + 2(7-х) = 17
3х + 14 - 2х = 17
х = 17- 14
х = 3
Следовтельно, трехместных палаток было 3, а двухместных 7-3 = 4
ответ: 3 трехместных и 4 двухместных палатки.
Можно сделать и уравнение с одним неизвестным.
Пусть было х двуместных палаток. Тогда трехместных (7-х). Известно, что всего было 17 туристов, тогда в двухместных палатках было 2х туристов, а в трехместных 3(7-х). Имеем уравнение
2х + 3(7-х)=17
2х + 21 - 3х = 12
-х = 17 - 21
-х = -4
х = 4
ответ: 4 двухместные палатки.