Во первых множество всех натуральных чисел обычно обозначают буквой N.
2. Если к натуральным числам присоединить число 0 и все целые отрицательные числа: −1,−2,−3,−4... — то получится множество целых чисел. Это множество обычно обозначают буквой Z.
3. Если к множеству целых чисел присоединить все обыкновенные дроби, то получится множество рациональных чисел. Это множество обычно обозначают буквой Q.
4. ∈ — знак принадлежности (элемент принадлежит множеству).
а) чтобы найти координаты вершины параболы, нужно найти производную функции и приравнять к 0
y' = 4x + 4
y' = 0
4x + 4 = 0
x = -1
y(-1) = 2*(-1)^2+4*(-1) + 6 = 2 - 4 + 6 = 4
(-1;4) - координаты вершины параболы
б) ветви параболы направленны вверх, т.к. коэфиициент при x^2 положительный (=2)
в) чтобы найти точи пересечения функции с осью абсцисс, нужно приравнять функцию к нулю
2x^2+4x+6 = 0
x^2+2x+3 = 0
D = 4 - 4*3 = -8 т.к. D < 0, то парабола не пересекается с осью абсцисс
2) y = 2x^2+4x+6 - парабола, оси которой направленны вверх и уходят в бесконечность. следовательно, нельзя определить наибольшее значение функции (либо оно равно бесконечности)
∉ и И
Объяснение:
Во первых множество всех натуральных чисел обычно обозначают буквой N.
2. Если к натуральным числам присоединить число 0 и все целые отрицательные числа: −1,−2,−3,−4... — то получится множество целых чисел. Это множество обычно обозначают буквой Z.
3. Если к множеству целых чисел присоединить все обыкновенные дроби, то получится множество рациональных чисел. Это множество обычно обозначают буквой Q.
4. ∈ — знак принадлежности (элемент принадлежит множеству).
5. ∉ — элемент не принадлежит множеству.
y=2x^2+4x+6
а) чтобы найти координаты вершины параболы, нужно найти производную функции и приравнять к 0
y' = 4x + 4
y' = 0
4x + 4 = 0
x = -1
y(-1) = 2*(-1)^2+4*(-1) + 6 = 2 - 4 + 6 = 4
(-1;4) - координаты вершины параболы
б) ветви параболы направленны вверх, т.к. коэфиициент при x^2 положительный (=2)
в) чтобы найти точи пересечения функции с осью абсцисс, нужно приравнять функцию к нулю
2x^2+4x+6 = 0
x^2+2x+3 = 0
D = 4 - 4*3 = -8
т.к. D < 0, то парабола не пересекается с осью абсцисс
2) y = 2x^2+4x+6 - парабола, оси которой направленны вверх и уходят в бесконечность. следовательно, нельзя определить наибольшее значение функции (либо оно равно бесконечности)