Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,
Предположим, что такая прогрессия содержит 7 или более членов. Запишем первые 7 ее членов: p1,p2,p3,p4,p5,p6,p7,.(все числа простые) Очевидно ,что разность между любыми двумя записанными числами равна k*d ,где k<7. Предположим что d не делиться на 7,тогда тк k<7 ,и число 7 простое,то kd -тоже не делиться на 7. А значит среди чисел :p1,p2,..p7 нет чисел с равными остатками от деления на 7. В силу простоты всех чисел, все они не делиться на 7. А значит остаток 0 не может быть. То есть остается 6 остатков. А чисел 7. Но это значит ,что хотя бы у двух простых чисел будут равные остатки.(Тк количество остатков от 1 до 6 не хватает на 7 чисел). То есть мы пришли к противоречию,значит d делиться на 7. По тому же принципу,если рассмотреть первые 5 членов,то можно доказать ,что d делиться на 5 . Первые 3,то делиться на 3. Два члена, делиться на 2. Для непростого числа членов это не работает. Значит d делиться на 7*5*3*2=210,то есть d>=210. Но Тк простые числа висят в диапазоне 100...300,то d<200. А значит число чисел не может быть 7 и более. Значит в такой прогрессии не более 6 членов причем в этой прогрессии d делиться на 2*3*5=30. Попробуем привести пример такой прогрессии. Пусть d>30,то тк d делиться на 30,то она хотя бы вдвое больше чем 30 ,то есть d>=60. (300-100)/60 <4 невозможно тк в прогрессии должно быть 6 членов. А значит это отношение не может быть меньше пяти. То есть это невозможно,а значит для такой прогрессии d=30. 300-30*5=150. Значит первый член меньше 150. Методом не сложного перебора можно найти такую прогрессию и она единственная :107,137,167,197,227,257. Тк в ответе нужно написать наибольшее из любой прогрессии,то ответ 257.
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами
А значит
36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения:
a = 1,
b = − 3,
c = − 108.
Найдем дискриминант по формуле D = b² − 4ac:
D = b² − 4ac = (− 3)² − 4 * 1 * (− 108) = 9 + 432 = 441
Корни уравнения находятся по формулам
x1 =(− b + √D)/2a,
x2 =(− b − √D)/2a:
x1 =(-(-3) + √441)/ (2*1)=(3 + 21)/2=24/2=12
x2 =(-(-3) -√441)/ (2*1)=(3 - 21)/2=-18/2=−9, но скорость не можеть быть со знаком минус.
Поэтому
скорость первого велосипедиста = х км/ч = 12 км/ч,
скорость другого велосипедиста = х-3 км/ч = 12-3=9 км/ч
ответ: скорость первого велосипедиста = 12 км/ч, скорость другого велосипедиста =9 км/ч
p1,p2,p3,p4,p5,p6,p7,.(все числа простые)
Очевидно ,что разность между любыми двумя записанными числами равна k*d ,где k<7.
Предположим что d не делиться на 7,тогда тк k<7 ,и число 7 простое,то kd -тоже не делиться на 7. А значит среди чисел :p1,p2,..p7 нет чисел с равными остатками от деления на 7. В силу простоты всех чисел, все они не делиться на 7. А значит остаток 0 не может быть. То есть остается 6 остатков. А чисел 7. Но это значит ,что хотя бы у двух простых чисел будут равные остатки.(Тк количество остатков от 1 до 6 не хватает на 7 чисел). То есть мы пришли к противоречию,значит d делиться на 7. По тому же принципу,если рассмотреть первые 5 членов,то можно доказать ,что d делиться на 5 . Первые 3,то делиться на 3. Два члена, делиться на 2. Для непростого числа членов это не работает. Значит d делиться на 7*5*3*2=210,то есть d>=210. Но Тк простые числа висят в диапазоне 100...300,то d<200. А значит число чисел не может быть 7 и более. Значит в такой прогрессии не более 6 членов причем в этой прогрессии d делиться на 2*3*5=30. Попробуем привести пример такой прогрессии. Пусть d>30,то тк d делиться на 30,то она хотя бы вдвое больше чем 30 ,то есть d>=60. (300-100)/60 <4 невозможно тк в прогрессии должно быть 6 членов. А значит это отношение не может быть меньше пяти. То есть это невозможно,а значит для такой прогрессии d=30. 300-30*5=150. Значит первый член меньше 150. Методом не сложного перебора можно найти такую прогрессию и она единственная :107,137,167,197,227,257. Тк в ответе нужно написать наибольшее из любой прогрессии,то ответ 257.