2) Область определения: Выражение под корнем должно быть неотрицательным 5x^2 + 2x + 1 >= 0 D = 4 - 4*5*1 = 4 - 20 < 0 - корней нет, оно положительно при любом х. 3) Корень арифметический, то есть неотрицательный, поэтому выражение справа тоже должно быть неотрицательным -x^2 - 0,4x + 1,8 >= 0 Умножаем на -5, при этом знак неравенства меняется 5x^2 + 2x - 9 <= 0 D = 4 - 4*5*(-9) = 4 + 180 = 184 = (2√46)^2 x1 = (-2 - 2√46)/10 = (-1-√46)/5 ~ -1,56; x2 = (-1+√46)/5 ~ 1,16 x ∈ [(-1-√46)/5; (-1+√46)/5]
4) Теперь решаем само уравнение 0,6*√(5x^2 + 2x + 1) = -0,2*(5x^2 + 2x - 9) Сокращаем на 0,2 3√(5x^2 + 2x + 1) = 5x^2 + 2x - 9 Замена 5x^2 + 2x + 1 = t > 0 при любом х, это мы уже знаем из п.2) 3√t = t - 10 Возводим в квадрат 9t = t^2 - 20t + 100 t^2 - 29t + 100 = 0 (t - 4)(t - 25) = 0
Решение: Обозначим время за которое проедет первый товарный поезд расстояние между городами (S) за (t) час, тогда второй товарный поезд проедет это расстояние, согласно условия задачи за (t+1,5) час Расстояние находится по формуле: S=V*t Первый товарный поезд проедет расстояние: S=90*t (1) Второй товарный поезд проедет расстояние: S=V*(t+1,5) (2) Приравняем первое и второе выражения: 90*t=60*(t+1,5) 90t=60t+90 90t-60t=90 30t=90 t=90:30 t=3 ( часа - за это время первый товарный поезд преодолеет расстояние между городами) Отсюда: S=90*3=270 (км)
x^2 + x = 0,6x + 1,8 - 0,6*√(5x^2 + 2x + 1)
Переносим корень налево, а все остальное направо
0,6*√(5x^2 + 2x + 1) = -x^2 - x + 0,6x + 1,8 = -x^2 - 0,4x + 1,8
2) Область определения:
Выражение под корнем должно быть неотрицательным
5x^2 + 2x + 1 >= 0
D = 4 - 4*5*1 = 4 - 20 < 0 - корней нет, оно положительно при любом х.
3) Корень арифметический, то есть неотрицательный, поэтому выражение справа тоже должно быть неотрицательным
-x^2 - 0,4x + 1,8 >= 0
Умножаем на -5, при этом знак неравенства меняется
5x^2 + 2x - 9 <= 0
D = 4 - 4*5*(-9) = 4 + 180 = 184 = (2√46)^2
x1 = (-2 - 2√46)/10 = (-1-√46)/5 ~ -1,56;
x2 = (-1+√46)/5 ~ 1,16
x ∈ [(-1-√46)/5; (-1+√46)/5]
4) Теперь решаем само уравнение
0,6*√(5x^2 + 2x + 1) = -0,2*(5x^2 + 2x - 9)
Сокращаем на 0,2
3√(5x^2 + 2x + 1) = 5x^2 + 2x - 9
Замена 5x^2 + 2x + 1 = t > 0 при любом х, это мы уже знаем из п.2)
3√t = t - 10
Возводим в квадрат
9t = t^2 - 20t + 100
t^2 - 29t + 100 = 0
(t - 4)(t - 25) = 0
5) Обратная замена
t1 = 5x^2 + 2x + 1 = 4
5x^2 + 2x - 3 = 0
(x + 1)(5x - 3) = 0
x1 = -1; x2 = 3/5 = 0,6 - оба корня попадают в Обл. Опр.
t2 = 5x^2 + 2x + 1 = 25
5x^2 + 2x - 24 = 0
(x - 2)(5x + 12) = 0
x3 = -12/5 = -2,4; x4 = 2 - оба корня не попадают в Обл. Опр.
ответ: x1 = -1; x2 = 0,6
Обозначим время за которое проедет первый товарный поезд расстояние между городами (S) за (t) час, тогда второй товарный поезд проедет это расстояние, согласно условия задачи за (t+1,5) час
Расстояние находится по формуле: S=V*t
Первый товарный поезд проедет расстояние:
S=90*t (1)
Второй товарный поезд проедет расстояние:
S=V*(t+1,5) (2)
Приравняем первое и второе выражения:
90*t=60*(t+1,5)
90t=60t+90
90t-60t=90
30t=90
t=90:30
t=3 ( часа - за это время первый товарный поезд преодолеет расстояние между городами)
Отсюда:
S=90*3=270 (км)
ответ: Расстояние между городами 270км