Мы знаем, что есть признак делимости числа на 9(если сумма цифр числа делится на 9, то и число делится на 9). Значит, что число должно делится не только на 9, но и на 10, для делимости на 90. 3+5=8. Это сумма известных нам цифр числа Теперь нам нужно найти две цифры, в сумме дающие 10.(две потому что нужна еще делимость на 10). Это цифры 8+2, 6+4, 4+6, 2+8. 35280. Сумма цифр равна 18(число кратно 9), а также оканчивается на 0(признак делимости на 10) Далее, можно тогда и 35820. 35460, 35640. ответ:35460, 35640, 35820, 35280.
Примем за х содержание меди в первоначальном сплаве. На основании задания составляем уравнение содержания меди:
Приводим к общему знаменателю и числитель приравниваем нулю. Получаем квадратное уравнение: х² + 30х - 1800 =0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=30^2-4*1*(-1800)=900-4*(-1800)=900-(-4*1800)=900-(-7200)=900+7200=8100;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(2root8100-30)/(2*1)=(90-30)/2=60/2=30;x₂=(-2root8100-30)/(2*1)=(-90-30)/2=-120/2=-60 (отрицательный корень отбрасываем).
ответ: меди в первоначальном сплаве было 30 кг.
Можно проверить: (30/40) + 0,05 = (40/50). 0,75 + 0,05 = 0,8. 0,8 = 0,8. То есть, первоначальное содержание меди было 75 %, стало 80 %, или на 5 % больше.
3+5=8. Это сумма известных нам цифр числа
Теперь нам нужно найти две цифры, в сумме дающие 10.(две потому что нужна еще делимость на 10). Это цифры 8+2, 6+4, 4+6, 2+8.
35280. Сумма цифр равна 18(число кратно 9), а также оканчивается на 0(признак делимости на 10)
Далее, можно тогда и 35820.
35460, 35640.
ответ:35460, 35640, 35820, 35280.
На основании задания составляем уравнение содержания меди:
Приводим к общему знаменателю и числитель приравниваем нулю.
Получаем квадратное уравнение:
х² + 30х - 1800 =0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=30^2-4*1*(-1800)=900-4*(-1800)=900-(-4*1800)=900-(-7200)=900+7200=8100;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(2root8100-30)/(2*1)=(90-30)/2=60/2=30;x₂=(-2root8100-30)/(2*1)=(-90-30)/2=-120/2=-60 (отрицательный корень отбрасываем).
ответ: меди в первоначальном сплаве было 30 кг.
Можно проверить:
(30/40) + 0,05 = (40/50).
0,75 + 0,05 = 0,8.
0,8 = 0,8.
То есть, первоначальное содержание меди было 75 %, стало 80 %, или на 5 % больше.