Принцеп такой же подумай. Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент. В данном случае: 1) 3х-y+6=0 -y= -6-3x y=3x+6, здесь k1=3
2) x-y+4=0 -y= -x-4 y=x+4, здесь k2=1
Воспользуемся формулой tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем: tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2 всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент.
В данном случае:
1) 3х-y+6=0
-y= -6-3x
y=3x+6, здесь k1=3
2) x-y+4=0
-y= -x-4
y=x+4, здесь k2=1
Воспользуемся формулой
tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем:
tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2
всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
ОДЗ: x+1≠0 => x≠-1
D(f)=x∈(-∞;-1)∪(-1;+∞)
2. y=2x²-2х-3 (График №2)
а) промежуток возрастания:(-∞;0.5)
промежуток убывания:(0.5;+∞)
(f`(x)=4x-2; x=0.5 - экстремум)
б) наименьшее значение функции: y=-3
в) y<0 при -1<х<2
3. -х²-2х+8=0
f(x)=-x^2-2x+8 (График №3)
x₁=-4
x₂=2
4. {y=-√х+3 (График №4)
{y=|x-3|
ОДЗ: x≥0
x₁=0; y₁=3
x₂=1; y₂=2
x₃=4; y₃=1
5.y=х²+px-24
Точка (4;0) принадлежит данной параболе
0=4²+р*4-24
16+4p-24=0
4p=8
p=2
f(x)=x²+2x-24 (График №5)
ось симметрии проходит через вершину параболы,
координаты вершины параболы:
x₀=-b/2a
-2/2*1=-1
y₀=-D/4a
D=2²-4*1*(-24)=100
-100/4*1=-25
Координаты вершины (-1;-25)
Уравнение оси симметриии параболы: х=-1