Итак мы нашли 0,1 - производительность первого (т.е. объем работы за 1 час)0,125 - производительность второго.
И, наконец, 1 - объем всей работы делим на производительность каждого и получаем искомое время каждого.
1 : 0,1 = 10 ч - за это время первый,работая отдельно, может выполнить все задание. 1 : 0,125 = 8 ч - за это время второй,работая отдельно, может выполнить все задание.
Задача на производительность Пусть х производительность первого рабочего, а у-второго рабочего Поскольку после 3 часов работы первого рабочего был сделан объем работ 3х, второй сделал (3-1)*у =2у. Всего было сделано 1-0,45 =0,55 объема работ Или запишем первое уравнение 3x+2y =0,55 Выразим из уравнения y y = (0,55-3x)/2 По окончанию работы кажды сделал ровно половину объема работ Время потраченное первым рабочим составило 1/(2x) Время потраченное вторым рабочим составило 1/(2y) Так как второй потратил на 1 час меньше запишем второе уравнение 1/(2x) - 1/(2y) =1 Поскольку х и у одновременно не равняются нулю то умножим обе части уравнения на 4х*у 2у-2х=4ху Подставим выражение для у полученное выше у=(0,55-3х)/2 0,55-3x-2x =2x(0,55-3x) 0,55-5x =1,1x-6x^2 6x^2-6,1x+0,55 =0 D =6,1^2-4*6*0,55 = 24,01 x1=(6,1-4,9)/12 = 0,1 x2=(6,1+4,9)/12=11/12 Найдем у y1 =(0,55-3*0,1)/2=0,25/2=0,125 y2=(0,55-3*(11/12))/2=(0,55-11/4)/2 =-1,1 ( Производительность не может быть отрицательной) Поэтому х2=11/12 также не удолетворяет решению Найдем время потраченное каждым рабочим на выполнение работы t1 =1/x1=1/0,1 =10 часов t2=1/y1 =1/0,125 =8 часов
х - производительность первого (т.е. объем работы за 1 час)у - производительность второго
3х - объем работы, которую сделал первый за 3 часа
(3-1)у = 2у - объем работы, которую сделал второй за 2 часа
1 - 0,45 = 0,55 - объем работы, которую сделали первый и второй вместе.
Поучаем первое уравнение:
3х + 2у = 0,55
В условии сказано, что по окончанию работы выяснилось, что каждый выполнил половину всего задания, т.е. 1/2 или 0,5.
0,5 /х - всё время, затраченное первым рабочим на выполнение задания
0,5 /у - всё время, затраченное вторым рабочим на выполнение задания
По условию:
0,5 /х >0,5/y на 1 час
Поучаем второе уравнение:
0,5 /х - 0,5/y = 1
Решаем систему:
{3х + 2у = 0,55
{0,5 /х - 0,5/y = 1
ОДЗ: x>0; y>0
Второе уравнение умножим на 2xy.
{3х + 2у = 0,55
{2xy·0,5 /х - 2xy·0,5/y = 1·2xy
{3х + 2у = 0,55
{y - x = 2xy
Из второго уравнения выразим y.
y-2xy = x
y(1-2x) = x
y = x/(1-2x)
Подставим в первое
3x + 2x/(1-2x) = 0,55
При x≠0,5
3x·(1-2x) +2x = 0,55·(1-2x)
3x-6x²+2x-0,55+1,1x=0
-6x² +6,1x - 0,55 = 0
6x² - 6,1x + 0,55 = 0
D = b²-4ac
D = 37,21 - 4·6·0,55 = 24,01
√D =√24,01 = 4,9
x₁ = (6,1 - 4,9)/12 = 1,2/12=0,1
x₁= 0,1
x₂ = (6,1 + 4,9)/12 = 11/12=11/12
x₂ =11/12
При x₁ = 0,1 находим у₁
y₁ = 0,1/(1-2·0,1) = 0,1/0,8 = 1/8
Получаем х₁ = 0,1 и у₁ = 1/8 = 0,125
При x₂ = 11/12 находим у₂
y₂ = 11/12 : (1-2·11/12) = 11/12 : (-10/12) = 11/12 · (- 12/10) = - 11/10 = - 1,1
у₂ - 1,1 - отрицательное противоречит ОДЗ.
Итак мы нашли
0,1 - производительность первого (т.е. объем работы за 1 час)0,125 - производительность второго.
И, наконец, 1 - объем всей работы делим на производительность каждого и получаем искомое время каждого.
1 : 0,1 = 10 ч - за это время первый,работая отдельно, может выполнить все задание.
1 : 0,125 = 8 ч - за это время второй,работая отдельно, может выполнить все задание.
ответ: 10ч; 8ч
Пусть х производительность первого рабочего, а у-второго рабочего
Поскольку после 3 часов работы первого рабочего был сделан объем работ 3х, второй сделал
(3-1)*у =2у.
Всего было сделано 1-0,45 =0,55 объема работ
Или запишем первое уравнение
3x+2y =0,55
Выразим из уравнения y
y = (0,55-3x)/2
По окончанию работы кажды сделал ровно половину объема работ
Время потраченное первым рабочим составило
1/(2x)
Время потраченное вторым рабочим составило
1/(2y)
Так как второй потратил на 1 час меньше запишем второе уравнение
1/(2x) - 1/(2y) =1
Поскольку х и у одновременно не равняются нулю то умножим обе части уравнения на 4х*у
2у-2х=4ху
Подставим выражение для у полученное выше у=(0,55-3х)/2
0,55-3x-2x =2x(0,55-3x)
0,55-5x =1,1x-6x^2
6x^2-6,1x+0,55 =0
D =6,1^2-4*6*0,55 = 24,01
x1=(6,1-4,9)/12 = 0,1
x2=(6,1+4,9)/12=11/12
Найдем у
y1 =(0,55-3*0,1)/2=0,25/2=0,125
y2=(0,55-3*(11/12))/2=(0,55-11/4)/2 =-1,1 ( Производительность не может быть отрицательной)
Поэтому х2=11/12 также не удолетворяет решению
Найдем время потраченное каждым рабочим на выполнение работы
t1 =1/x1=1/0,1 =10 часов
t2=1/y1 =1/0,125 =8 часов