Приравнять к нулю и решить как квадратное уравнение:
6х²-7х+1=0
D=b²-4ac = 49-24=25 √D=5
х₁=(-b-√D)/2a
х₁=(7-5)/12
х₁=2/12
х₁=1/6;
х₂=(-b+√D)/2a
х₂=(7+5)/12
х₂=12/12
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1/6 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от 1/6 до 1, то есть, решения неравенства находятся в интервале
х∈ (1/6; 1), или 1/6 < x < 1.
Решение неравенства: х∈ (1/6; 1).
Неравенство строгое, скобки круглые.
2) 5х²-4х-1>0
Приравнять к нулю и решить как квадратное уравнение:
5х²-4х-1=0
D=b²-4ac =16+20=36 √D=6
х₁=(-b-√D)/2a
х₁=(4-6)/10
х₁= -2/10
х₁= -0,2;
х₂=(-b+√D)/2a
х₂=(4+6)/10
х₂=10/10
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (как в неравенстве), при значениях х от - бесконечности до -0,2 и при х от 1 до + бесконечности.
Решение неравенства: х∈ (-∞; -0,2)∪(1; +∞).
Неравенство строгое, скобки круглые.
3) х²+8х<0
Приравнять к нулю и решить как неполное квадратное уравнение:
х²+8х=0
х(х+8)=0
х₁ = 0;
х+8=0
х₂ = -8.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -8 и х= 0, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -8 до 0.
Решение неравенства: х∈ (-8; 0).
Неравенство строгое, скобки круглые.
4) 8х²+10х-3>=0
Приравнять к нулю и решить как квадратное уравнение:
8х²+10х-3=0
D=b²-4ac =100+96=196 √D=14
х₁=(-b-√D)/2a
х₁=(-10-14)/16
х₁= -24/16
х₁= -1,5;
х₂=(-b+√D)/2a
х₂=(-10+14)/16
х₂=4/16
х₂=0,25.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у >= 0 (как в неравенстве), при значениях х от - бесконечности до -1,5 и при х от 0,25 до + бесконечности.
Решение неравенства: х∈ (-∞; -1,5]∪[0,25; +∞).
Неравенство нестрогое, скобки квадратные.
5) 2х²+9х+9<=0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =81-72=9 √D=3
х₁=(-b-√D)/2a
х₁=(-9-3)/4
х₁= -12/4
х₁= -3;
х₂=(-b+√D)/2a
х₂=(-9+3)/4
х₂= -6/4
х₂= -1,5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -3 и х= -1,5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (как в неравенстве), при значениях х от -3 до -1,5.
Решение неравенства: х∈ [-3; -1,5].
Неравенство нестрогое, скобки квадратные.
6) х²+7х-60<0
Приравнять к нулю и решить как квадратное уравнение:
х²+7х-60=0
D=b²-4ac =49+240=289 √D=17
х₁=(-b-√D)/2a
х₁=(-7-17)/2
х₁= -24/2
х₁= -12;
х₂=(-b+√D)/2a
х₂=(-7+17)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -12 и х= 5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -12 до х = 5.
(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
Объяснение:
(3 - х)(7х + 1) < 5х + 2
21х + 3 - 7х² - х < 5x + 2
-7x² + 20x + 3 < 5x + 2
-7x² + 20x - 5x + 3 - 2 < 0
-7x² + 15x + 1 = 0
D = 15² - 4 * (-7) = 225 + 28 = 253
√D = √253
x₁ = (-15 - √253) / (-7 * 2) = -(15 + √253) / (-14) = (15 + √253)/14 (примерно 2,207)
x₂ = (-15 + √253) / (-7 * 2) = -(15 - √253) / (-14) = (15 - √253) / 14 (примерно -0,06)
начертим координатную прямую (см. рис)
подставим -1 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - (-1)) * (7 * (-1) + 1) - 5 * (-1) - 2 =
= 4 * (-7 + 1) + 5 - 2 =
= -6 * 4 + 5 - 2 =
= -24 + 5 - 2 = -21
впишем в промежутке от -∞ до (15 - √253) / 14 знак "-"
подставим 0 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 0) * (7 * 0 + 1) - 5 * 0 - 2 = 3 * 1 - 2 = 1
впишем в промежутке от (15 - √253) / 14 до (15 + √253)/14 знак "+"
подставим 3 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 3) * (7 * 3 + 1) - 5 * 3 - 2 = 0 - 15 - 2 = -17
впишем в промежутке от (15 + √253) / 14 до +∞ знак "-"
Неравенство принимает отрицательное значение в промежутках:
(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
В решении.
Объяснение:
Решить неравенства:
1) 6х²-7х+1<0
Приравнять к нулю и решить как квадратное уравнение:
6х²-7х+1=0
D=b²-4ac = 49-24=25 √D=5
х₁=(-b-√D)/2a
х₁=(7-5)/12
х₁=2/12
х₁=1/6;
х₂=(-b+√D)/2a
х₂=(7+5)/12
х₂=12/12
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1/6 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от 1/6 до 1, то есть, решения неравенства находятся в интервале
х∈ (1/6; 1), или 1/6 < x < 1.
Решение неравенства: х∈ (1/6; 1).
Неравенство строгое, скобки круглые.
2) 5х²-4х-1>0
Приравнять к нулю и решить как квадратное уравнение:
5х²-4х-1=0
D=b²-4ac =16+20=36 √D=6
х₁=(-b-√D)/2a
х₁=(4-6)/10
х₁= -2/10
х₁= -0,2;
х₂=(-b+√D)/2a
х₂=(4+6)/10
х₂=10/10
х₂=1.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (как в неравенстве), при значениях х от - бесконечности до -0,2 и при х от 1 до + бесконечности.
Решение неравенства: х∈ (-∞; -0,2)∪(1; +∞).
Неравенство строгое, скобки круглые.
3) х²+8х<0
Приравнять к нулю и решить как неполное квадратное уравнение:
х²+8х=0
х(х+8)=0
х₁ = 0;
х+8=0
х₂ = -8.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -8 и х= 0, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -8 до 0.
Решение неравенства: х∈ (-8; 0).
Неравенство строгое, скобки круглые.
4) 8х²+10х-3>=0
Приравнять к нулю и решить как квадратное уравнение:
8х²+10х-3=0
D=b²-4ac =100+96=196 √D=14
х₁=(-b-√D)/2a
х₁=(-10-14)/16
х₁= -24/16
х₁= -1,5;
х₂=(-b+√D)/2a
х₂=(-10+14)/16
х₂=4/16
х₂=0,25.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -0,2 и х= 1, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у >= 0 (как в неравенстве), при значениях х от - бесконечности до -1,5 и при х от 0,25 до + бесконечности.
Решение неравенства: х∈ (-∞; -1,5]∪[0,25; +∞).
Неравенство нестрогое, скобки квадратные.
5) 2х²+9х+9<=0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =81-72=9 √D=3
х₁=(-b-√D)/2a
х₁=(-9-3)/4
х₁= -12/4
х₁= -3;
х₂=(-b+√D)/2a
х₂=(-9+3)/4
х₂= -6/4
х₂= -1,5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -3 и х= -1,5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (как в неравенстве), при значениях х от -3 до -1,5.
Решение неравенства: х∈ [-3; -1,5].
Неравенство нестрогое, скобки квадратные.
6) х²+7х-60<0
Приравнять к нулю и решить как квадратное уравнение:
х²+7х-60=0
D=b²-4ac =49+240=289 √D=17
х₁=(-b-√D)/2a
х₁=(-7-17)/2
х₁= -24/2
х₁= -12;
х₂=(-b+√D)/2a
х₂=(-7+17)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -12 и х= 5, отметить эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (как в неравенстве), при значениях х от -12 до х = 5.
Решение неравенства: х∈ (-12; 5).
Неравенство строгое, скобки круглые.