1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
В решении.
Объяснение:
1. Сократить дроби:
а) 2b/2c = b/c; сократить (разделить) 2 и 2 на 2
б) pq/q = p; сократить (разделить) q и q на q
в) x²/(x²+x) = x²/x(x+1) = x/(x+1); сократить (разделить) x и х на х
г) (m²-16n²)/(m+4n) =
в числителе разность квадратов, развернуть: (m²-16n²)=(m-4n)(m+4n):
=(m-4n)(m+4n)/(m+4n) = (m-4n); сократить (m+4n) и (m+4n) на (m+4n).
д) (х²-1)/(х²-х) = (х-1)(х+1)/х(х-1) = (х+1)/х; сократить (х-1) и (х-1) на (х-1).
2. Сократить дроби:
а) (64-b²) / (b²-16b+64) =
=(64-b²) / (b-8)²=
= -(b²-64) / (b-8)² =
в числителе разность квадратов, развернуть:
= -(b-8)(b+8) / (b-8)²=
сократить (b-8)² и (b-8) на (b-8):
= -(b+8) / (b-8);
б) (ху - 4х + 3у -12) / (4 - у)²=
=[(ху - 4х) + (3у -12)] / (4 - у)²=
=[x(у - 4) + 3(у - 4)] / (4 - у)²=
=[(у - 4)*(x + 3)] / (4 - у)²=
=[-(4 - y)(x + 3)] / (4 - у)²=
сократить (4 - у)² и (4 - у) на (4 - у):
= -(х + 3) / (4 - у).
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
В решении.
Объяснение:
1. Сократить дроби:
а) 2b/2c = b/c; сократить (разделить) 2 и 2 на 2
б) pq/q = p; сократить (разделить) q и q на q
в) x²/(x²+x) = x²/x(x+1) = x/(x+1); сократить (разделить) x и х на х
г) (m²-16n²)/(m+4n) =
в числителе разность квадратов, развернуть: (m²-16n²)=(m-4n)(m+4n):
=(m-4n)(m+4n)/(m+4n) = (m-4n); сократить (m+4n) и (m+4n) на (m+4n).
д) (х²-1)/(х²-х) = (х-1)(х+1)/х(х-1) = (х+1)/х; сократить (х-1) и (х-1) на (х-1).
2. Сократить дроби:
а) (64-b²) / (b²-16b+64) =
=(64-b²) / (b-8)²=
= -(b²-64) / (b-8)² =
в числителе разность квадратов, развернуть:
= -(b-8)(b+8) / (b-8)²=
сократить (b-8)² и (b-8) на (b-8):
= -(b+8) / (b-8);
б) (ху - 4х + 3у -12) / (4 - у)²=
=[(ху - 4х) + (3у -12)] / (4 - у)²=
=[x(у - 4) + 3(у - 4)] / (4 - у)²=
=[(у - 4)*(x + 3)] / (4 - у)²=
=[-(4 - y)(x + 3)] / (4 - у)²=
сократить (4 - у)² и (4 - у) на (4 - у):
= -(х + 3) / (4 - у).