В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
dniil2003
dniil2003
19.09.2020 15:30 •  Алгебра

очень нужно решение уравнения

Показать ответ
Ответ:
asem052
asem052
20.12.2021 14:13

Исследовать функцию f (x) = 12x/(9+x²) и построить ее график.

1. Область определения функции - вся числовая ось, так как знаменатель не может быть равен нулю.

2. Функция f (x) = 12x/(9+x²) непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 f(–x) = 12*(–x)/(9+(–x)²) = –(12x(9+x²)) = –f(x).

Функция является нечетной. График функции симметричен относительно начала координат.

Функция непериодическая.

4. Точки пересечения с осями координат:

Ox: y=0, 12x/(9+x²) = 0 ⇒ x=0. Значит (0;0) - точка пересечения с осью Ox.

 Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

Находим производную заданной функции.
f′(x)=(12⋅x/(9+x²))′==((12⋅x)′⋅(9+x²)−12⋅x⋅(9+x²)′)/(9+x²)²==(12⋅(9+x²)−12⋅x⋅(x²)′)(9+x²)²==((12⋅(9+x²)−24⋅x⋅x)/(9+x²)²ответ:f′(x)=(12⋅(9+x2)−24⋅x²)(9+x²)² = (12(9-x²))/(9+x²)².
Приравниваем её нулю (достаточно числитель):
12(9-х²) = 0, 9 = х², х = +-3.

 x = 3, x = -3  критические точки.

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке:
x_{1} = -3
Максимум функции в точке: x_{2} = 3.
Где производная положительна - функция возрастает, где отрицательна - там убывает. 
Убывает на промежутках (-oo, -3] U [3, oo).
Возрастает на промежутке  [-3, 3].

6. Найдем точки перегибов, для этого надо решить уравнение

\frac{d^2}{dx^2}f(x) = 0.
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: 
Вторая производная \frac{d^2}{dx^2}( \frac{12x}{9+x^2})= \frac{24x(x^2-27)}{(9+x^2)^3}.
Приравниваем нулю и решаем это уравнение.

Для дроби достаточно нулю приравнять числитель:

24x(x²-27) = 0.

Решаем это уравнение: х = 0, х² - 27 = 0
Корни этого уравнения: х₁ = 0. х₂ = √27 =3√3,  х₃ = -√27 = -3√3.

7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках

[-3*sqrt(3), 0] U [3*sqrt(3), oo)

Выпуклая на промежутках

(-oo, -3*sqrt(3)] U [0, 3*sqrt(3)]

8. Искомый график функции дан в приложении.

0,0(0 оценок)
Ответ:
Можно методом Гаусса, можно с метода Крамера.
Давай по Крамеру:
       1  -2  -3
Δ =  3   2  1   = -10 -18 -4 -( -12 +2 +30) = -32 - 20 = -52
        2  2  -5
  
         0  -2  -3
Δх =  2   2   1   = 0 -12 +10 -(30 +0 +20) = -2  -50 = -52
         -5  2  -5 

          1   0   -3
Δу =   3   2   1    = -10 +45 +0 -( -12 -5 +0) = 35 +17 = 52
           2  -5  -5 
   
          1  -2  0
Δz =   3   2   2 = -10 +0  -8 -( 0 +4 +30) = -6 -34 = -52
          2   2  -5
х = Δх/Δ = 1
у = Δу/Δ = -1
z = Δz/Δ = 1
ответ:(1; -1; 1)
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота