очень нужно ССОООЧЧ АЛГЕБРА ЭТО!
1. При каких значениях переменной имеет смысл выражение: (2x-1)/(x^2-49).
2. Сократите дробь: (24a^6 b^4)/(16a^3 b^7 ).
3. У дробь (8a^3-125)/(4a^2+10a+25) Найдите значение дроби при a=5/7.
4. Выполните действия:
а) (x+3y)/(x+y)-(x-y)/2y ∶ (x^2-y^2)/(4y^2 );
б) (2b/(b^2-16)-4/(b+4))∙(b+4)/(8-b).
Пусть S₀ - первоначальная цена холодильника
на р%. - ежегодно снижается цена этого холодильника
Процент – это сотая часть числа.
Представим проценты в виде десятичной дроби:
p% = p% : 100% = 0,01p
тогда
0,01 от S₀ = 0,01р·S₀
На 0,01р·S₀ (руб.) снижается цена этого холодильника.
1) По первого года его цена S₁ будет такова:
S₁ = S₀ - 0,01p·S₀ = S₀(1-0,01p)
где (1-0,01p) - проценты, на которые снизится цена в конце первого года
2) По второго года его цена S₂ определяется относительно S₁ и будет такова:
S₂ = S₁ - 0,01p·S₁ = S₁(1-0,01p)
Подставим вместо S₁ его значение из первого действия:
S₂ = S₀(1-0,01p)·(1-0,01р) = S₀(1-0,01p)²
где (1-0,01p)² - проценты, на которые снизится цена в конце второго года.
Объем V = a^2*h = 4
h = 4/a^2
Боковые грани все одинаковые, прямоугольники axh. Их периметр
P = 2(a + h) - должен быть минимальным. Подставляем h из равенства
P = 2(a + 4/a^2) = 2(a^3 + 4)/a^2
Минимум функции будет в точке, где производная равна 0.
P ' = 2*(3a^2*a^2 - 2a*(a^3 + 4))/a^4 = 2*(3a^3 - 2a^3 - 8)/a^3 = 0
a^3 - 8 = 0
a^3 = 8
a = 2 - сторона квадрата в основании параллелепипеда
h = 4/a^2 = 4/4 = 1 - высота параллелепипеда
P = 2(a + h) = 2(2 + 1) = 2*3 = 6