1) вершина в точке О(0; 0) 2) ветви параболы направены вниз 3) заполняем таблицу: х= 1 -1 2 -2 1/3 -1/3 у=-3 3 -12 -12 -1/3 -1/3
Чертим систему координат, отмечаем положительное направление стрелками вправо и вверх, подписываем оси вправо - ось х, вверх - ось у, отмечаем начало координат - точку О(0; 0) Далее выбираем единичный отрезок, равный 1 клетке.
Ставим точки из таблицы и отмечаем точку О(0;0), через точки проводим плавную линию, подписываем график у=-3х² . Всё!
Р = 2(a+b) = 20 a+b = 10 диагональ прямоугольника (по т.Пифагора) = √(a² + b²) можно рассмотреть и квадрат диагонали (для простоты вычислений), т.к. функция √х -- монотонно возрастающая, т.е. чем меньше (х), тем меньше √х d² = a² + b² = a² + (10-a)² = 2a² + 100 - 20a для определения экстремума -- рассмотрим производную))) f ' (a) = 4a - 20 = 0 а = 5 и b = 5 --- это квадрат))) то, что это именно минимум, можно проверить устно))) если возьмете стороны чуть другие (например, 4 и 6), то диагональ будет увеличиваться)))
1) вершина в точке О(0; 0)
2) ветви параболы направены вниз
3) заполняем таблицу:
х= 1 -1 2 -2 1/3 -1/3
у=-3 3 -12 -12 -1/3 -1/3
Чертим систему координат, отмечаем положительное направление стрелками вправо и вверх, подписываем оси вправо - ось х, вверх - ось у, отмечаем начало координат - точку О(0; 0)
Далее выбираем единичный отрезок, равный 1 клетке.
Ставим точки из таблицы и отмечаем точку О(0;0), через точки проводим плавную линию, подписываем график у=-3х² . Всё!
a+b = 10
диагональ прямоугольника (по т.Пифагора) = √(a² + b²)
можно рассмотреть и квадрат диагонали (для простоты вычислений), т.к.
функция √х -- монотонно возрастающая, т.е. чем меньше (х), тем меньше √х
d² = a² + b² = a² + (10-a)² = 2a² + 100 - 20a
для определения экстремума -- рассмотрим производную)))
f ' (a) = 4a - 20 = 0
а = 5 и b = 5 --- это квадрат)))
то, что это именно минимум, можно проверить устно)))
если возьмете стороны чуть другие (например, 4 и 6), то диагональ будет увеличиваться)))