Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график у=f(х).
По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем от аргумента π/3
Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.
по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.
Вот такие вот преобразования графика тригонометрической функции.
ответ: ответ: один ученик побывал и в кино, и в театре, и в цирке. Пошаговое объяснение: РЕШЕНИЕ. Пусть х – количество учащихся, которые побывали и в кино, и в театре, и в цирке. Тогда (6-х) –количество учащихся, побывавших и в кино, и в театре; (10-х) - количество учащихся, побывавших и в кино, и в цирке; (4-х) - количество учащихся, побывавших и в цирке, и в театре. Известно, что в кино побывало 25 человек, найдём, сколько ребят посетило только кино: 25 – (6 – х) – (10 – х) –х = 25-6+х-10 +х-х=9+х Аналогично найдём, сколько ребят посетило только театр: 11 -(6 – х) – (4 – х) – х =11-6+х-4+х-х=1+х Аналогично найдём, сколько ребят посетило только цирк: 17 - (10 – х) - (4 – х) – х = 17-10+х – 4 +х –х=3+х Т.к. двое учеников не посещали никакие увеселительные заведения, то количество активных ребят равно 36 - 2 = 34. Составляем уравнение: Х+4-х+10-х+6-х+9+х+1+х+3+х = 34 Х+33=34 Х=1 (уч) – посетил и кино, и театр, и цирк.
Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график у=f(х).
По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем от аргумента π/3
Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.
по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.
Вот такие вот преобразования графика тригонометрической функции.
ответ: один ученик побывал и в кино, и в театре, и в цирке.
Пошаговое объяснение:
РЕШЕНИЕ. Пусть х – количество учащихся, которые побывали и в кино, и в театре, и в цирке. Тогда (6-х) –количество учащихся, побывавших и в кино, и в театре; (10-х) - количество учащихся, побывавших и в кино, и в цирке; (4-х) - количество учащихся, побывавших и в цирке, и в театре. Известно, что в кино побывало 25 человек, найдём, сколько ребят посетило только кино:
25 – (6 – х) – (10 – х) –х = 25-6+х-10 +х-х=9+х
Аналогично найдём, сколько ребят посетило только театр:
11 -(6 – х) – (4 – х) – х =11-6+х-4+х-х=1+х
Аналогично найдём, сколько ребят посетило только цирк:
17 - (10 – х) - (4 – х) – х = 17-10+х – 4 +х –х=3+х
Т.к. двое учеников не посещали никакие увеселительные заведения, то количество активных ребят равно 36 - 2 = 34.
Составляем уравнение:
Х+4-х+10-х+6-х+9+х+1+х+3+х = 34
Х+33=34
Х=1 (уч) – посетил и кино, и театр, и цирк.