ОЧЕНЬ В класі навчається 20 учнів 16 з них відвідали театр. Знайти ймовірність того, що навмання взятий учень класу не бувт в театрі.
2.
Кидають дві однакові монети. Яка з подій більше ймовірна? А - монети випадуть однаковою стороною. Б - монети випадуть різними сторонами. (нужно объяснить почему)
3.
Яка ймовірність того, що навмання вибране чисто ділиться на 3?
4.
Знайти центральні тенденції вибірки: 2; 3; 4; 4;. 6; 6; 6; 7; 7; 8;
Перепишем первое уравнение в виде: x + y = -3
Система теперь выглядит так:
x + y = -3
x² + y² = 5
Это чисто метод замены переменной. Пусть x + y = a, xy = b.
Выразим x² + y² через a и b.
(x + y)² = x² + 2xy + y², с учётом замены
a² = x² + 2b + y², откуда
x² + y² = a² - 2b.
Идём далее, с учётом замены перепишем уже систему в следующем виде:
a = -3 a = -3 a = -3
a² - 2b = 5 2b = a² - 5 = 9 - 5 = 4 b = 2
Возвращаемся к старым переменным, учитывая, что x + y = a, xy = b
x + y = -3 y = -3 - x
xy = 2 x(-3-x) = 2 (1)
(1)-3x - x² = 2
x² + 3x + 2 = 0
x1 = -2; x2 = -1
Приходим к двум вариантам:
x = -2 или x = -1
y = -1 y = -2
Система решена
1)
В лифт 9-этажного дома на первом этаже зашли 6 человек. Найти вероятность того, что все выдут на разных этажах, если каждый с одинаковой вероятностью может выйти на любом этаже, начиная со второго.
Рассуждаем так. Чтобы пассажиры вышли на разных этажах нужно лифту остановится 6 раз на любом из 8 этажей. (на 2,3,4,5,6,7,8,9) Тогда общее число исходов событий
теперь каждый может выйти только на одном этаже.. при этом второй уже этот этаж должен проехать
Значит число возможных исходов
8*7*6*5*4*3=20160
тогда вероятность 20160/262144= 0,0769
2)
сколькими можно разделить группу из 17 человек на две группы чтобы в одной было 5 человек , а в другой 12 ?
Тут все проще.. Если мы выберем группу из 5 человек то остальные попадут во вторую группу.. Значит достаточно просто посчитать количество возможных выбрать группу 5 человек из 17