ОЧЕНЬ выполнения домашнего задания (в часах) по результатам о ти учащихся приведена в таблице:
2,6 1,8 2,3 3,3 0,9 3,4 1,7 3,7 3,8 3
a) представьте данные в виде интервальной таблицы частот с интервалом в 1 час;
b) найдите процент учащихся, которые выполняют домашнее задание более трех
часов.
Предыдущий
4х-у=32
4х+1+7х=32
4х+7х=32+1
11х=33х=33/11
х=3
у=1-7*3
у= - 20
1б) скобка х=у+2
3х-2у=9
3*(у+2)-2у=9
3у+6-2у=9
3у-2у=9-6
у=3
х=3+2
х=5
2а) скобка 5х-3у=14 скобка 5х-3у=14
2х+у=10 у=10-2х
5х-3*(10-2х)=14
5х-30+6х=14
5х+6х=14+30
11х=44
х=44/11
х=4
у=10-2*4
у=2
2б) скобка х+5у=35 скобка х=35-5у
3х+2у=27 3х+2у=27
3*(35-5у)+2у=27
105-15у+2у=27
-13у=27-105
-13у=-78
13у=78
у=78/13
у=6
х=35-5*6
х=5
3а) скобка 2х-у=2 скобка - у=2-2х скобка у= - 2+2х
3х-2у=3 3х-2у=3 3х-2у=3
3х-2*( - 2+2х)=3
3х+4-4х=3
3х-4х=3-4
- х=-1
х=1
у= - 2+2*1
у=0
3б) скобка 5у-х=6 скобка - х=6-5у скобка х= - 6+5у
3х-4у=4 3х-4у=4 3х-4у=4
3*( - 6+5у)-4у=4
- 18+15у-4у=4
11у=4+18
у=22/11
у=2
х= - 6+5*2
х= - 6+10
х=4
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
отсюда
где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения
- ответ