ОЧЕНЬ Задача 1: З пункту А відправили за течією річки пліт. Через 5год 20 хв з пункту А за плотом вийшла моторна лодка, яка наздогнала пліт, пройшовши 20км. Знайти швидкість течії річки, якщо лодка проходила за1 год на 12км більше, ніж пліт.
Задача 2:Для виконання малярних робіт одному робітникові потрібно на 5 днів менше, ніж другому. Роботу вони розпочали разом та за 4 дні виконали 2/3 усієї роботи. Визначити, за який час кожний з них окремо може вико¬нати такий обсяг роботи.
ответ:Составим систему уравнений, приняв каждое из чисел, равным Х и У. При этом, если остаток от деления чисел равен 4-м, а неполное частное - 3-м, значит одно из чисел, уменьшенное на 4, будет делиться на второе число без остатка и будет равно 3-м. Среднее арифметическое двух чисел равно сумме этих чисел, деленных на 2:
(Х – 4) / У = 3;
(Х + У) / 2 = 18
Х + У = 2 * 18;
Х + У = 36;
Х = 36 – У;
(Х – 4) / У = 3;
(36 – У – 4) / У = 3;
(32 - У) / У = 3;
32 – У = 3 * У;
32 = 3 * У + У = 4 * У;
У = 32 / 4 = 8;
Х = 36 – У = 36 – 8 = 28.
Проверим:
(8 + 28) / 2 = 36/2 = 18;
28/8 = (24 + 4) / 8 = 24/8 + 4/8 = 3 + 4/8 = 3 (ост. 4).
Объяснение:
9x2 + 3x; б) 6xy +3x2y – 12xy2
2°. Разложите на множители:
а) y(у – 1) + 2(y – 1); б) x2 – 64.
3°. Сократите дробь (x^2+ 3x)/(3a+ax).
4°. У выражение (а – b)2 – (а – b)(а + b).
5°. Решите уравнение x2 + 7x = 0.
6 У выражение: с(с – 2)(с + 2) – (с – 1)(с2 + с + 1).
7 Найдите корни уравнения 3x3 – 27x = 0.
8 Разложите на множители многочлен 2х + 2у – х2 – 2ху – у2.
2 вариант.
1°. Вынесите общий множитель за скобки:
а) 2ab – ab2; б) 5a4 – 10a3 + 10a2
2°. Разложите на множители:
а) ax – ay + 2x – 2y; б) 9a2 – 16b2.
3°. Сократите дробь (2a+4)/(a^(2 )- 4).
4°. У выражение (x – 1) (x + 1) – x(x – 3).
5°. Решите уравнение x2 – 25 = 0.
6 У выражение: (х + 1)(х2 + х + 1)
Объяснение: