Итак, если уравнение вида 1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х: х(ах+в) =0. Произведение равно равно нулю, если хотя бы один из множителей равен нулю. Получаем: х=0 или ах+в=0 х=0 или х=-в/а - искомые решения. 2) ах^+с=0, т. е. в=0, то имеем два случая: а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0. б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
(х +6 -х²)/(х +1)² ≤ 0 ( знаменатель всегда ≥ 0, причём х ≠ -1), значит числитель ≤ 0
х +6 -х² ≤ 0 ( корни 3 и -2)
-∞ -2 -1 3 +∞
- + + - это знаки х +6 -х²
ответ: х∈ (-∞; -2]∪[3; +∞)
4) (3х - х²) (х² + 2х - 8) > 0
метод интервалов.
ищем нули числителя и знаменателя:
3х - х² = 0 х² +2х - 8 = 0
корни 0 и 3 корни -4 и 2
-∞ -4 0 2 3 +∞
- - + + - это знаки 3х - х²
+ - - + + это знаки х² +2х - 8
это решение неравенства
1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х:
х(ах+в) =0.
Произведение равно равно нулю, если хотя бы один из множителей равен нулю.
Получаем:
х=0 или ах+в=0
х=0 или х=-в/а - искомые решения.
2) ах^+с=0, т. е. в=0, то имеем два случая:
а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0.
б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Откуда,
х=-√с/√а или х=√с/√а - искомые решения.