Одна из сторон прямоугольника на 5м больше, чем другоя, а его площадь превышает 300м*. Какую длину может иметь большая из сторон этого прямоугольника очень
3) y=2x-2 Задаем два значения Х и получаем два значения У. х=0, у=-2 х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую. Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит. Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции