Задача. Дано: t3 = 3ч (гуляли) ; t 4 = 6 (все путешествие) ; v1 = 9 км/ч ( по течению) ; v2 = 3 км/ч ( против течения) ; Определить S - ?Решение. 1) находим время движения по реке: t = t4 - t3 ; t = 6ч - 3 ч = 3 ч; 2) Обозначим расстояние до лагеря S, время движения вверх против течения t1 ; а время движения вниз по течению t2 Тогда t2 = t - t1; 3). Скорость движения против течения равна (v1 - v2), уравнение движения против течения: S = t1(v1 - v2). 4) Скорость движения по течению ( v1 + v2), уравнение движения S = t2(v1 + v2); или, с учетом 2 действия S = (t - t1)*(v1 + v2); 5). Так как расстояние одно и то же, приравниваем правые части обоих уравнений и получаем уравнение с одним неизвестным (t1), которое надо будет преобразовать, упростить. t1(v1 - v2)= (t - t1)*(v1 + v2); 6). Раскрываем скобки, приводим подобные слагаемые и получаем 2t1*v1 = t(v1 + v2) Отсюда запишем уравнение для неизвестного t1. Вот оно: t1 = t(v1 + v2) /2v1; Вычислим: t1 = 3*(9 +3)/2*9 = 2 (ч) . (против течения) . 7). Время движения по течению t2 = t - t1 = 3 - 2 = 1(ч) . 8). Вычислим расстояние по одному из уравнений: S = 2*(9 -3) = 12 (км) . 9) А по другому проверим правильность решения: S = 1*(9 +3) = 12 (ч) . Ч. и т. д. ответ: Туристы отплыли от лагеря на расстояние 12 км. Успеха Вам и "питерки"!* Примечание: когда начинал решать, ответов еще не было. Оба - первые! Им и говорите " "!
Чтобы графически решить систему уравнений надо выразить y через x и затем построить графики получившихся функций на одной координатной плоскости, их точки пересечения будут решениями данной системы. приводим к функциям:
1) y=-x^2+4 график - парабола, ветви вниз вершина:
(0;4) найдем нули: y=0; x^2=4; x1=2; x2=-2 (2;0), (-2;0) Чтобы построить график этой функции, берем график y=-x^2 и сдвигаем его на 4 точки вверх по оси y, получим y=-x^2+4 и также этот график будет проходить через вышеуказанные точки. 2) y=x+2 линейная функция, для построения графика нужны 2 точки x=0; y=2; (0;2) y=0; x=-2; (-2;0) график в приложении: функция 1 - красным цветом, 2 - синим цветом они пересекаются в точках (-2;0) и (1;3) - это и есть решения системы. ответ: (-2;0), (1;3)
приводим к функциям:
1) y=-x^2+4
график - парабола, ветви вниз
вершина:
(0;4)
найдем нули:
y=0; x^2=4; x1=2; x2=-2
(2;0), (-2;0)
Чтобы построить график этой функции, берем график y=-x^2 и сдвигаем его на 4 точки вверх по оси y, получим y=-x^2+4
и также этот график будет проходить через вышеуказанные точки.
2) y=x+2
линейная функция, для построения графика нужны 2 точки
x=0; y=2; (0;2)
y=0; x=-2; (-2;0)
график в приложении:
функция 1 - красным цветом, 2 - синим цветом
они пересекаются в точках (-2;0) и (1;3) - это и есть решения системы.
ответ: (-2;0), (1;3)