Пусть х км расстояние, которое проехал велосипедист до встречи. Тогда мотоциклист проехал до встречи (80 - х) км. Так как велосипедист приехал в В через 3 часа после встречи, то он проехал расстояние (80 - х) км за 3 часа, а значит его скорость (80 - х)/3 (км/ч). Мотоциклист же расстояние х км проехал за 1 ч.20мин., т.е. за 4/3 часа, поэтому его скорость х: 4/3 = 3х/4 (км/ч). Так как до встречи они затратили одинаковое время, то можно составить уравнение:
Так как за х мы брали расстояние от А до места встречи, то х = 32 (км).
ответ: На расстоянии 32 километра от пункта А произошла встреча.
Пусть х км расстояние, которое проехал велосипедист до встречи. Тогда мотоциклист проехал до встречи (80 - х) км. Так как велосипедист приехал в В через 3 часа после встречи, то он проехал расстояние (80 - х) км за 3 часа, а значит его скорость (80 - х)/3 (км/ч). Мотоциклист же расстояние х км проехал за 1 ч.20мин., т.е. за 4/3 часа, поэтому его скорость х: 4/3 = 3х/4 (км/ч). Так как до встречи они затратили одинаковое время, то можно составить уравнение:
Так как за х мы брали расстояние от А до места встречи, то х = 32 (км).
ответ: На расстоянии 32 километра от пункта А произошла встреча.
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение: