Одна зі сторін прямокутника удвічі більша від другої. Бісектриса одного із кутів відсікає від нього трикутник, площа якого 18 см^2. Знайдіть площу трикутника.
Число считается чётным, если чётна его последняя цифра. Имеем ряд цифр 0, 2, 3, 4, 5. Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * * 1) Варианты расположения цифр без повторений: "Закрепляем" ноль на месте единиц - единственный вариант. На место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - любую из оставшихся двух. Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц, на место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - только одно число - ноль нельзя. Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ: 24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями: Ноль на месте единиц: 4*5*5*1 =100 вариантов Двойка на месте единиц: 4*5*5*1=100 вариантов Четвёрка на месте единиц: 4*5*5*1=100 вариантов Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения: 1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48 2) С повторениями цифр: (4*5*5*1)*3=100*3=300
Если число кратное 24 ⇒оно делится на 24 , но для этого оно должно делиться и на 3 и на 8 ( т.е. сумма цифр должна делиться на 3 и число, составленное из последних трех цифр должно делиться на 8). Произведения цифр =16, отсюда следует , что в составе этих цифр не могут быть 0 (естественно) ,1,3,5,7,6,7,9. Множество цифр {1;2;4;8} ;16 =2*2*2*2 ; Можно все показать. Подумайте , интересно 1128 , ...1224, , 8112.
число делится на 4, если число составленное из последних двух цифр делится на 4) *04 , *08, *12 ,
Имеем ряд цифр 0, 2, 3, 4, 5.
Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * *
1) Варианты расположения цифр без повторений:
"Закрепляем" ноль на месте единиц - единственный вариант.
На место десятков можно поставить любую из оставшихся четырёх цифр,
на место сотен - любую из оставшихся трёх,
на место тысяч - любую из оставшихся двух.
Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц,
на место десятков можно поставить любую из оставшихся четырёх цифр,
на место сотен - любую из оставшихся трёх,
на место тысяч - только одно число - ноль нельзя.
Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ:
24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями:
Ноль на месте единиц: 4*5*5*1 =100 вариантов
Двойка на месте единиц: 4*5*5*1=100 вариантов
Четвёрка на месте единиц: 4*5*5*1=100 вариантов
Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения:
1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48
2) С повторениями цифр: (4*5*5*1)*3=100*3=300
Множество цифр {1;2;4;8} ;16 =2*2*2*2 ;
Можно все показать. Подумайте , интересно
1128 , ...1224, , 8112.
число делится на 4, если число составленное из последних двух цифр делится на 4)
*04 , *08, *12 ,