1) x^2 >= 196
x <= -14 U x >= 14
2) x(x+5)(2-6x)(2x-4) <= 0
Разделим неравенство на (-4). При этом знак неравенства поменяется.
x(x+5)(3x-1)(x-2) >= 0
По методу интервалов, особые точки: -5, 0, 1/3, 2.
x ∈ (-oo; -5] U [0; 1/3] U [2; +oo)
3) Это НЕ неравенство
4) x^2*(2+3) > 0
5x^2 > 0
Это неравенство истинно при любом x, кроме 0.
x ∈ (-oo; 0) U (0; +oo)
5) (x+2)/(x-4)^2 >= 0
x ≠ 4
(x - 4)^2 > 0 при любом x, не равном 4, поэтому можно на нее умножить.
x + 2 >= 0
x ∈ [-2; 4) U (4; +oo)
1) x^2 >= 196
x <= -14 U x >= 14
2) x(x+5)(2-6x)(2x-4) <= 0
Разделим неравенство на (-4). При этом знак неравенства поменяется.
x(x+5)(3x-1)(x-2) >= 0
По методу интервалов, особые точки: -5, 0, 1/3, 2.
x ∈ (-oo; -5] U [0; 1/3] U [2; +oo)
3) Это НЕ неравенство
4) x^2*(2+3) > 0
5x^2 > 0
Это неравенство истинно при любом x, кроме 0.
x ∈ (-oo; 0) U (0; +oo)
5) (x+2)/(x-4)^2 >= 0
x ≠ 4
(x - 4)^2 > 0 при любом x, не равном 4, поэтому можно на нее умножить.
x + 2 >= 0
x ∈ [-2; 4) U (4; +oo)
b2 = b1*q
b3 = b1*q²
b4 = b1*q³
Тогда b1*b2=27 => b1*b1*q=27
b3*b4=1/3 => b1*q² * b1*q³ = 1/3
b1² *q = 27 => b1² = 27/q => q > 0
b1² *q^5 = 1/3 => b1² = 1/3q^5
=> 27/q = 1/3q^5
27 * 3q^5 = q | : q
81 q^4 - 1 = 0
(9q² - 1 )(9q² + 1 ) = 0
9q² - 1 = 0
(3q - 1)(3q + 1) = 0
3q - 1 = 0 или 3q + 1 = 0
3q = 1 или 3q = - 1
q = 1/3 или q = - 1/3 (не удовлетворяет условию q > 0)
b1² = 27/q
b1² = 27: 1/3
b1² = 81
b1 = 9 или b1 = -9
b2 = b1*q=9*1/3 = 3 b2 = b1*q=-9*1/3 = -3
b3 = b1*q²=9*1/9 = 1 b3 = b1*q²=-9*1/9 = -1
b4 = b1*q³=9*1/27 = 1/3 b4 = b1*q³=-9*1/27 =-1/3
ответ: b1,b2,b3,b4 равны соответственно 9, 3, 1 , 1/3 или
- 9, - 3, - 1 , - 1/3.