Объяснение:
Пусть x1, x2 - катеты, x3 - гипотенуза
Теорема Виета для кубического ур-я:
x1 + x2 + x3 = 12, отсюда x1 + x2 = 12 - x3
x1 * x2 * x3 = 60, отсюда x1 * x2 = 60/x3
По т. Пифагора
x3^2 = x1^2 + x2^2
(x1 + x2)^2 = (12 - x3)^2
(12 - x3)^2 = 144 - 24x3 + x3^2
x1^2 + x2^2 + 2x1*x2 = x3^2 +120/x3
x3^2 +120/x3 = 144 - 24x3 + x3^2
24x3 +120/x3 - 144 = 0 | *x3/24, где х3≠ 0. Мы можем это делать, т.к. x3 - не является корнем уравнения - 60 ≠ 0
x3^2 - 6x3 + 5 = 0
По Виета
x3 = 1 x3 = 5
Подставим x3 = 1 в выражение
1 - 12 + a - 60 = 0
a = 71
Подставим x3 = 5 в выражение
125 - 300 + 5a - 60 = 0
a = 47
Продолжаем искать корни
x1 + x2 = 11 (1) x1 + x2 = 7 (2)
x1 * x2 = 60, x1 * x2 = 12
отсюда x1 = 60/x2 отсюда x1 = 12/x2
Решаем 1-ую систему уравнений м-том подстановки
60/x2 + x2 = 11 | * x2
x2^2 - 11x2 + 60 = 0
D<0 - нет решения (Слава Богу)
Решаем 2-ую систему уравнений м-том подстановки
12/x2 + x2 = 7 |*x2
x2^2 - 7x2 + 12 = 0
x2 = 3 x2 = 4
x1 = 4 x1 = 3
Подставим x = 3 в выражение
27 - 108 + 3а - 60 = 0
а = 47
Подставим x = 4 в выражение
64 - 192 + 4а - 60 = 0
корни данного уравнения x1 = 3 x2 = 4 x3 = 5
а = 47, a = 71
Чтобы найти экстремумы, нужно взять производную и приравнять ее к 0.
y' = 4x^3 - 4*3x^2 - 18*2x = 4x^3 - 12x^2 - 36x = 0
4x(x^2 - 3x - 9) = 0
x1 = 0
Дальше решаем квадратное уравнение
D = 3^2 - 4*1*(-9) = 9 + 36 = 45 = (3√5)^2
x2 = (3 - 3√5)/2 ≈ -1,854 < 0
x3 = (3 + 3√5)/2 ≈ 4,854 > 0
Теперь проверяем максимумы и минимумы.
При x < (3 - 3√5)/2 будет y' < 0, функция убывает.
При x € ((3 - 3√5)/2; 0) будет y' > 0, функция возрастает.
Значит, x2 = (3 - 3√5)/2 - точка минимума.
При x € (0; (3 + 3√5)/2) будет y' < 0, функция убывает.
Значит, x1 = 0 - точка максимума.
При x > (3 + 3√5)/2 будет y' > 0, функция возрастает.
Значит, x3 = (3 + 3√5)/2 - точка минимума.
Объяснение:
Пусть x1, x2 - катеты, x3 - гипотенуза
Теорема Виета для кубического ур-я:
x1 + x2 + x3 = 12, отсюда x1 + x2 = 12 - x3
x1 * x2 * x3 = 60, отсюда x1 * x2 = 60/x3
По т. Пифагора
x3^2 = x1^2 + x2^2
(x1 + x2)^2 = (12 - x3)^2
(12 - x3)^2 = 144 - 24x3 + x3^2
x1^2 + x2^2 + 2x1*x2 = x3^2 +120/x3
x3^2 +120/x3 = 144 - 24x3 + x3^2
24x3 +120/x3 - 144 = 0 | *x3/24, где х3≠ 0. Мы можем это делать, т.к. x3 - не является корнем уравнения - 60 ≠ 0
x3^2 - 6x3 + 5 = 0
По Виета
x3 = 1 x3 = 5
Подставим x3 = 1 в выражение
1 - 12 + a - 60 = 0
a = 71
Подставим x3 = 5 в выражение
125 - 300 + 5a - 60 = 0
a = 47
Продолжаем искать корни
x1 + x2 = 11 (1) x1 + x2 = 7 (2)
x1 * x2 = 60, x1 * x2 = 12
отсюда x1 = 60/x2 отсюда x1 = 12/x2
Решаем 1-ую систему уравнений м-том подстановки
60/x2 + x2 = 11 | * x2
x2^2 - 11x2 + 60 = 0
D<0 - нет решения (Слава Богу)
Решаем 2-ую систему уравнений м-том подстановки
12/x2 + x2 = 7 |*x2
x2^2 - 7x2 + 12 = 0
x2 = 3 x2 = 4
x1 = 4 x1 = 3
Подставим x = 3 в выражение
27 - 108 + 3а - 60 = 0
а = 47
Подставим x = 4 в выражение
64 - 192 + 4а - 60 = 0
а = 47
корни данного уравнения x1 = 3 x2 = 4 x3 = 5
а = 47, a = 71
Объяснение:
Чтобы найти экстремумы, нужно взять производную и приравнять ее к 0.
y' = 4x^3 - 4*3x^2 - 18*2x = 4x^3 - 12x^2 - 36x = 0
4x(x^2 - 3x - 9) = 0
x1 = 0
Дальше решаем квадратное уравнение
D = 3^2 - 4*1*(-9) = 9 + 36 = 45 = (3√5)^2
x2 = (3 - 3√5)/2 ≈ -1,854 < 0
x3 = (3 + 3√5)/2 ≈ 4,854 > 0
Теперь проверяем максимумы и минимумы.
При x < (3 - 3√5)/2 будет y' < 0, функция убывает.
При x € ((3 - 3√5)/2; 0) будет y' > 0, функция возрастает.
Значит, x2 = (3 - 3√5)/2 - точка минимума.
При x € (0; (3 + 3√5)/2) будет y' < 0, функция убывает.
Значит, x1 = 0 - точка максимума.
При x > (3 + 3√5)/2 будет y' > 0, функция возрастает.
Значит, x3 = (3 + 3√5)/2 - точка минимума.