Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
1
70+110=180 градусов как внутренние односторонние, значит а||b
2
125+65=190 градусов. Сумма внутренних односторонних углов равна 180 градусов, значит а и b не параллельны
3
Внутренние накрест лежащие углы равны, значит а||b
4
Сумма внутренних односторонних углов равна 180 градусов :
a+180-a=180
180=180 - верно, значит а||b
5
Внутренние накрест лежащие углы равны :
60+а=120-а
а+а=120-60
2а=60
а=30 градусов,
а и b параллельны, когда альфа=30 градусов
В остальном не параллельны
6
Тр-к АКВ и СКD
AK=CK - по условию
DK=BK - по условию
<АКВ=<СКD - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними, значит соответствующие элементы равны
<АВD=<СDB - как накрест лежащие, следовательно, DC||AB
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч